

An Improved Version of the Microscale Flow Model MISCAM - Evaluation according to VDI Guideline 3783/9

Joachim Eichhorn¹ & Anke Kniffka²

Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
 Meteorological Institute, University of Leipzig, Germany

11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (Harmo11)

Cambridge, UK, 2 – 7 July 2007

1

Harmo11 - 2-5.July 2007 - Cambridge

Outline

- The Model MISCAM
- VDI Guideline 3783/9
- Results of the Evaluation
- Discussion
- Outlook

MISCAM – up to version 5.x

- Threedimensional non-hydrostatic flow model
- k- ε turbulence closure, modified as suggested by Kato & Launder (1993) and Lopez (2002)
- Simple numerical procedures, runs on standard
 PC
- ~ 100 implementations in Europe

MISCAM - version 6

- Optional: Use of predictor corrector advection scheme (*MacCormack*, 1969) for momentum transport
- Optional: Use of corrected upstream scheme (MPDATA, *Smolarkiewicz*, 1989) for transport of scalars (k, ε)
- Minor bug fixes

VDI guideline 3783/9

Prognostic microscale wind field models

- Evaluation for flow around buildings and obstacles
 - General evaluation
 - Traceability
 - Documentation
 - Scientific evaluation
 - Completeness of model equations
 - Requirements on grid structure etc.

VDI guideline 3783/9

Prognostic microscale wind field models

- Evaluation for flow around buildings and obstacles
 - Validation
 - Consistency checks
 - Comparison to wind tunnel data
 - Final evaluation

Consistency checks

- Homogeneity
- Scalability
- Grid resolution
- Grid orientation
- Steady state

Consistency checks

Steady state:

Upstream advection acted as an accelarator of the overall convergence towards a steady solution

- ⇒ need to modify internal steady state criterion
- ⇒ ~15% increase of number of time steps ⇒

Consistency checks

- Homogeneity
- Scalability
- Grid resolution
- Grid orientation
- Steady state

MISCAM – Improvement and Evaluation Harmo11 – 2-5. July 2007 – Cambridge

Comparison to wind tunnel data - all data points

	Hit rate % (required according to guideline: 66)			
Test case	u	Ve	W	
C1 (Beam)	86	./.	96	©
C3 (Cube, 270°)	94	98	93	©
C4 (Cube, 225°)	85	76	81	©

Harmo11 - 2-5.July 2007 - Cambridge

Comparison to wind tunnel data - all data points

	Hit rate % (required according to guideline: 66)				
Test case	u	u v w			
C5 (Cuboid)	77	90	87	(C)	
C6 (Array of obstacles)	92	68	81	©	

MISCAM – Improvement and Evaluation Harmo11 – 2-5.July 2007 – Cambridge

Comparison to wind tunnel data - near field

	Hit rate % (required according to guideline: 66)			
Test case	u	Ve	W	
C1 (Beam)	70	./.	88	(C)
C3 (Cube, 270°)	90	96	88	(C)
C4 (Cube, 225°)	76	62	66	

GUTENBERG MAINVERSITÄT

Harmo11 - 2-5.July 2007 - Cambridge

Comparison to wind tunnel data - near field

	Hit rate % (required according to guideline: 66)					
Test case	u	u v w				
C5 (Cuboid)	74	86	79	(C)		
C6 (Array of obstacles)	n.a.	n.a.	n.a.			

Comparison to wind tunnel data

Asymmetry of distribution of hit rates (C4):

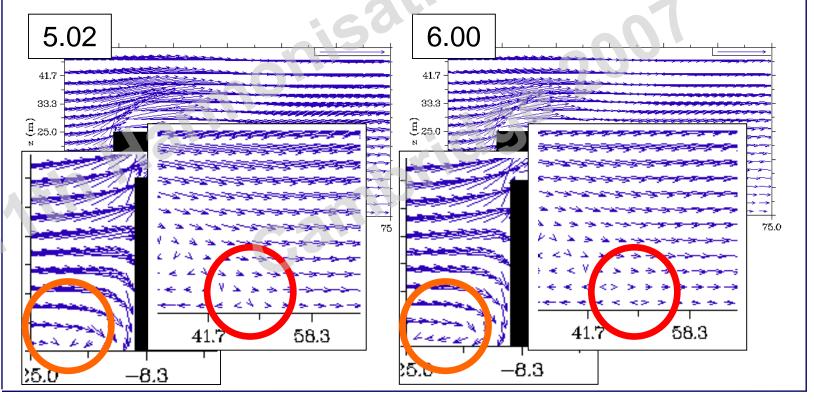
- Wind tunnel inflow direction deviates from diagonal orientation (223° instead of 225°)
- Change of results for inflow direction 223°:

	Hit rate % (required: 66)			
C4 (Cube, 223°)	3 u	V	W	
All data points	85 → 84	76 → 81	81 → 81	©
Near field	76 → 76	62 → 68	66 → 67	©

Comparison to wind tunnel data

Array of obstacles (C6):

- Speculation!
 Wind tunnel inflow probably not in x-direction
- Model run for inflow direction 250° gives:


Hit rate % (required: 66)				
Test case	u	V	W	
C6 (array of obstacles)	92 → 93	68 → 84	81 → 81	<u>©</u>

Harmo11 - 2-5.July 2007 - Cambridge

Comparison 5.02 ←→ 6.00, qualitatively

Cuboid, 270° (C3)

MISCAM – Improvement and Evaluation Harmo11 – 2-5.July 2007 – Cambridge

GUTENBERG MAUNIVERSIT

Comparison 5.02 ←→ 6.00, hit rates

	Hit rates % (5.02)			
Test case	u	V	W	
C1 (Beam)	86 (<mark>87</mark>)	./.	96 (<mark>95</mark>)	<u>©</u>
C3 (Cube, 270°)	94 (93)	98 (97)	93 (<mark>93</mark>)	<u>©</u>
C4 (Cube, 225°)	85 (<mark>84</mark>)	76 (<mark>76</mark>)	81 (81)	<u>©</u>

Harmo11 - 2-5.July 2007 - Cambridge

Comparison 5.02 ←→ 6.00, hit rates

	Hit rates % (5.02)			
Test case	J	V	W	
C5 (Cuboid)	77 (77)	90 (88)	87 (86)	③
C6 (Array of obstacles)	92 (93)	68 (67)	81 (81)	©

Harmo11 - 2-5.July 2007 - Cambridge

Discussion

- Improvement of advection schemes results in marginal improvement of simulates flow field.
- Flow separation at building edges still not reproduced satisfactorily.
- Both MISCAM versions fulfill requirements of the guideline only after correction of inflow profile for case C4.
- No significant deviations between evaluation results for version 5 and 6.
- Users are advised to use version 6 due to higher credibility of results.

Discussion

- Quality of wind tunnel data must be carefully evaluated
- Model developers are advised to carry out validations beyond the requirements of the guideline
- An additional guideline for dispersal models is still missing but is considered necessary

Outlook

- Evaluation results of other developers?
- Alternative data sets?
- Revision of the guideline should include an evaluation of the turbulence closure.
- A comparison of complete wind vectors might be more meaningful than the point by point comparisons of Cartesian wind components.