
SELMA^{GIS}

Version 9.29.4

System for Calculating and Representing Air Pollutant Concentrations

By Ingenieurbüro Lohmeyer GmbH & Co. KG

Radebeul, August 2013

Ingenieurbüro Lohmeyer GmbH & Co. KG

Immissionsschutz, Klima, Aerodynamik, Umweltsoftware

Mohrenstraße 14, D-01445 Radebeul

 Telefon:
 +49 (0) 351 / 8 39 14 - 0

 E-Mail:
 info.dd@lohmeyer.de

 URL:
 www.lohmeyer.de

1

29

Contents

SELMA^{GIS}

Introduction	1
Installation	3
System Requirements	
Installation	
Support Info	
SELMA ^{GIS} Project	4
SELMA ^{GIS} Configuration	5
Meteorology Factory	
Show Meteo File	
Import AKTerm	
Meteo File Formats	
Domain	
Terrain Grid	
Receptors along Roads	
Digitising Tools	
Create Shape Files	
Digitising Street Sources	20
Digitising Point Sources	22
Digitising Area/Grid Sources	23
Digitising Buildings	25
Emission rate dialog	
Digitising Menue	
Digitising Dialog (Control Area)	
= .9	

AUSTAL2000

Controls and Commands	30
SELMA ^{GIS} Toolbar	31
Austal Navigation	
Emissions	
Terrain	33
Meteorology	
Monitor Points	
Start AUSTAL2000	
Emissions Factory	
Generate Time Series Streets	
Generate Time Series Point Sources	
Generate Time Series Area Sources	
Generate Time Series Grid Sources	
Calculation Street Emission	
Results	
Results AUSTAL2000	
Monitor points	
AUSTAL File Formats	
Point emission source shape	
Area/Grid source shape	
Street Emission Source Shape	
Time serie Point/Area/Grid	
	55

Т	Time serie Street sources	54
E	Emission factor file	54
E	Building Shape	55
	Austal2000 Result Shape	

PROKAS

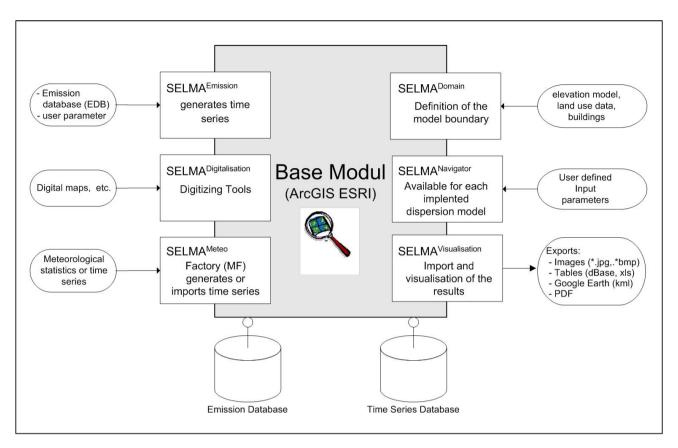
55

Introduction	
Controls and Commands	59
SELMA ^{GIS} Toolbar	60
PROKAS Navigation	
Street Emission	61
Receptor Points	
Meteorology	64
Start PROKAS	64
PROKAS E	66
Calculation Street Emission	66
Options	
File formats	73
Results	
Total Concentrations	84
PROKAS Result Shape	
I I I I I I I I I I I I I I I I I I I	

Index

87

SELMA^{GIS}


Introduction

The Emission and Dispersion Modelling System SELMA^{GIS} Version 9.29 is a modular software package which is running under ArcMap[™] which is part of the geographical information system (GIS) ArcGIS[™] ArcView 9.1-3 and 10 supplied by ESRI. ArcMap[™] is a Windows based GIS. Its user interface is according to Windows principles (e.g. drag and drop). All modules of SELMA^{GIS} are plug-ins under ArcMap[™] and can be activated by menus and buttons. SELMA^{GIS} supports data flow workaround which is usable for different dispersion models.

SELMA^{GIS} supplies the following modules:

- Emission
- Digitizing
- Meteo
- Domain
- Navigator for AUSTAL2000, MEMO/MUSE, OML-Highway and PROKAS
- Visualisation

At present, SELMA^{GIS} is in operation in Ingenieurbüro Lohmeyer GmbH & Co. KG and various clients in Germany, Bulgaria, Lithuania and Egypt, where it is utilized for calculating air pollutant concentrations with regard to environmental impact assessments for licensing procedures, as well as for calculation and representation of the spatial distribution of air pollution serving as information for the administration or for public relations activities, for cause analysis of the air pollution with harmful substances and for evaluation of the effects of emission reduction measures.

The following dispersion models are available in SELMA^{GIS}:

- AUSTAL2000 is a product of the further development of the TA Luft model. Significant parts of SELMA^{GIS} (e.g. the part for PM10 due to motor vehicle emissions) were adjusted to the requirements of the 1999/30/EG Directive.
- The mesoscale meteorological model MEMO and the dispersion model MARS/MUSE including a model for photochemical reactions. It can be used for calculation in large extents and is able to consider emission inventories.
 MEMO and MARS/MUSE is developed and supported by the University of Thessalonica, Greece
- We are working on implementing the dispersion model PROKAS. PROKAS is used for calculation of air pollution concentration on roads and road systems. It consists of various modules to calculate emissions on roads, pollutant dispersion on roads without or with loose developments, as well as dispersion on densely developed roads (street canyons).
- additional dispersion modules will be implemented on demand

In its Emission Factory module, the system can calculate emissions from street traffic for user defined pollutants e.g. NO_X and PM10, incl. the

traffic related whirl-ups of PM10 from roadway abrasion, dust on the street and wear of tires. The emission computation is based on emission factors appraised by the user, as well as on a representative daily traffic variation. The emission factors can be ordered from Lohmeyer GmbH & Co. KG.

For computing the traffic related emissions with the Emission Factory SELMA^{GIS} module, a file is accessed which contains the emission factors for different traffic situations and years structured by trucks and passenger cars, calculated externally in advance.

From the following sources, the system can calculate the dispersion of harmful substances, given the particular emissions, statistical wind data and initial load values:

- Single sources (point sources) of the industry/energy production (heating plants, thermal power plants) and from other relevant emitters
- Line sources (streets)
- Area sources/diffuse sources (e.g. domestic heating, industry/energy production/storage of dusty goods, as well as from dust depositions, which can be caused by certain circumstances, like strong wind).

Installation

System Requirements

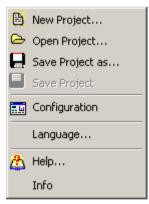
System requirements for SELMA^{GIS} are Windows 2000, Windows XP, Windows VISTA or Windows 7 operating systems. Installed ArcGIS Version 9.1 or upper. A Pentium IV or equivalent on 3 GHz and min 512 MB RAM, 1GB is recommended.

Installation

- 1. Be sure that ArcGIS is not running and you have *administrator rights* on the operating system.
- Install the Rainbow Software from the SELMA^{GIS} CD (Raindbow\Sentinel Protection Installer 7.6.5.exe or download current version from <u>http://www.safenetinc.com/support-downloads/sentinel-drivers/</u> for your operating system
- 3. Put the Dongle in an USB Port.
- 4. Execute the setup.exe from the SELMA^{GIS} installation CD (SELMAGIS\setup.exe) and follow the introductions.

 Open the SELMA^{GIS} licence manager under the Taskbar from Windows and check if SELMA^{GIS} Basic Module and AUSTAL2000 is available.

Support Info


Support about SELMA^{GIS} user interfaces gives the

Ingenieurbüro Lohmeyer GmbH & Co. KGT Tel.: +49(0)351/839 14-18 Fax: +49(0)351/839 14-59 Email: info.software@lohmeyer.de home: www.lohmeyer.de

SELMA^{GIS} Project

All Parameter, Options and setting of supported Dialogs are stored in a SELMA^{GIS} project file (Extension *.sel). Use project file to store your own profiles.

If the SELMA^{GIS} project file has the same name (including the directory) like the ArcMap project file (*.mxd) the SELMA^{GIS} project file will be loaded automatically while starting ArcMap.

New Project:

creates a new SELMA^{GIS} project file.

Open Project:

opens an existing SELMA^{GIS} project file.

Save Project as:

saves a SELMA^{GIS} project file under a new file name.

Save Project:

saves the current SELMA^{GIS} project file.

Language:

opens a dialog to define language. The selected language appears in all

SELMA^{GIS} Dialogs of the base module, AUSTAL2000 and PROKAS (no Lithuanian Language) after restart ArcMap.

Configuration:

opens a dialog to define various options

SELMA^{GIS} Configuration

Dialog to define substances which will be considered in emission and dispersion calculations and options for digitising.

Configuration	Configuration
Components Digitising	Components Digitising
Chemical components SO2 Chloroethane NO Hydrogen fluoide NO2 NH3 NOx Hg Benzene Vild card Dust components PM V Ni As V Hg Pb V TI Cd Vild card	Emission factors file C:\60285_CARDS\play\T3\2002_HB21.eft Add number to name
X Close	X Close
Configuration Components Digitising Scheme AUSTAL2000 MEM0/MUSE OML-Highway PROKAS	

Register Components :

Only for AUSTAL2000 substances to be calculated must be selected by checking the checkboxes.

Register Digitising/ Emissions factors file :

Defines the Emission Factors file name. The names of Traffic situations

(1. column) appear in the combo box Traffic Situation in the dialog <u>Digitising Street Sources</u>.

Register Digitising/ Add number to name :

Defines if the row number is added automatically to the source name in the dialogs Digitising Point Area and Streets.

Register Scheme :

Change the scheme depended to the selected dispersion module which is available under SELMA^{GIS}. Commands in the SELMA^{GIS} Toolbar will be added or hidden.

Meteorology Factory

The Meteorology Factory provides tools to show and to generate meteorological time series in the format which is needed from the models.

Show Meteo File

Opens the window wind rose for the graphic representation and editing of an AKS-File.

In the menu File wind distributions can be opened, imported, exported or printed as a picture. It's possible to open AKS files [name].aks as well as wind distributions in the formats *.wnd, *.akt, *.tal, *.met. Each Format can be saves as Wind Dispersion Classes Statistics File which is used by e.g. PROKAS.

The wind distribution is displayed in percentage as a wind rose. Wind speed is characterized in certain colours and line widths like in the legend on the left side below. The frequencies of dispersion classes are displayed in the middle below.

The option import in the File menu allows to generate a AkTerm-File.

Settings for the graphic representation of the wind distribution can be done in the menu Graphic Window (or double click or right mouse click on the Image). Title and legend can be edited and it's possible to scale the size of the graphic. Furthermore the graphic can be displayed in black and white. The setting ABK is used to define the number of positions after decimal point.

Editing of the dispersion class statistics can be started in the menu Edit. Using the slide control Wind Direction on the right side, turns the angle of the whole wind distribution. By changing the mean wind velocity the frequencies of the dispersion classes will be adapted. If you want to change wind direction and wind velocity, keep in mind that the wind direction must be changed first. By Clicking on the button 'Save' you can store the file in the project directory. It is possible to resize the Wind Rose Window and it is possible to export the wind rose as a graphic file (*.wmf, *.bmp, *.jpg).

Short Cuts: Strg+D = Print Strg+E = Export Graphic File Strg+C = Copy image to Clipboard

Important note:

• If you resize the dialog, please remark, that the Graphic changes the size right-left reserved.

Data formats from measurements of meteorological stations (frequency distribution of wind speed, wind direction and Monin-Obukhov dispersion category) will be convert to the AKTerm format which is needed from AUSTAL2000. For that the Monin-Obukhov dispersion categories are translated to Klug/Manier dispersion categories according to the TA-Luft.

More Convert interfaces to various formats [e.g. import from other models like the mesoscale prognostic (dynamic) wind field model METRAS or the microscale prognostic wind field model MISKAM] can be programmed on request.

Import AKTerm

Generates a meteorological time series out of at least one input file in the formats *.dbf or *.csv. The input file must contain hourly data of wind direction and wind velocity. The columns of the input file with the according information can be chosen with the drop down lists. In case the columns of the input file are already named similar, the allocation will be done automatically. Missing values are detected by the character -999.

Furthermore it's necessary to specify data for the determination of the atmospheric stability conditions. Depending on the available data set 4 possibilities are given for the determination. The first possibility is to load the Dispersion category as itself. Reading in a Monin-Obukhov-Length time series is the second way to determine stability conditions. The third way is reading in cloud cover data. This information can be also imported from a separate file. The fourth possibility is to import global radiation data. Keep in mind that the third and fourth option demand location information. In case the location name is not listed on the right side, specify geographic coordinates on the right side. This information is necessary due to derive sunrise and sunset times, which are a precondition for the determination of stability conditions.

The specification of the station ID, roughness length of the measuring station and the selected year for the time series are obligatory. To start the generation select a directory and define a name for the output file.

The Date columns requires formats as follow: Year: yyyy, Month: mm, Day: dd Hour: Integer (0..23)

It is possible to import a selected year or all years in separated files or import the data sets as they are. Use the options in the combobox Selects Year for AKTerm. (Choose the year column first.)

OML and OML-Highway MET-files can be imported as well. For Met files the Import Dialog defines all parameters automatically.

enerat	e AKTerm						
Input Fi	le			Mi	ssing D) ata Value =	-999
C:\Proç	grammierung\f	Roseplo	t\Beispieldateien	_Import\metda	t_eng.	csv	6
Year	YEAR	•	Hour	HOUR	•		
Month	монтн	-	Wind Speed	WSPEED	-	C Nodes	• m/
Day	DAY	•	Wind Direction	WDIR	¥	Degrees	
Dispers	ion Category	Monin	-Obukhov Lengtł	ר Cloud Cove	r Glo	bal Radiatio	n
- Selec	et Field						
			MOL	-			
No. of N	4eteo-Station					00000	
	Aeteo-Station	ig heigh	t			000000	m
Wind sp							m 01.5
Wind sp Roughr	beed measurin	eteo-Sta				10 0.1 2004	
Wind sp Roughr	beed measurin ness Length M Year for AKTer	eteo-Sta				10 0.1	01.5

Meteo File Formats

AKTerm

Format: ASCII

The wind situation will be considered in the form of a dispersion category time series. This file has information line by line about the date, time, wind direction, wind speed, dispersion category according to Klug/Manier, Turner category and ww-key number. Two formats are supported.

The format of the file is shown in the following lines.

109991995010100021113480 109991995010101022123480 109991995010102026133480 109991995010103027133425 1099919950101040251234 0 1099919950101050251234 0 1099919950101060251434 3 109991995010107025123480

An AKTerm is a text file, which includes one line with 24 Sting characters for each continuous hour of the year. For each parameter are reserved digits which should not be separated by a blank. Only no values can be stored with blanks. Each character means:

Parameter	Position of digits	required
number of meteorological station	1 to 5	no
Date (JJJJMMTTSS)	6 to 15	yes
Interpolation identification	16	no
Wind direction (deca degree)	17 to 18	yes
Wind speed (notes)	19 to 20	yes
Klug/Manier class (16)	21	yes
Turner class	22	no
ww key	23 to 24, the weather as two figure number.	no

This file consists of a header and a data set. In the header there are maximum 5 comment lines starting with the character '*'. A line with the calculated anemometer height for different roughness lengths follows after the comment lines. It starts with the character string

```
+ Anemometerhoehen (0.1 m):
```

followed by the 9 integer anemometer heights in the unit 0.1m (for each, 4 characters without leading zero, separated with a blank), which are related to the roughness lengths 0.01 to 2 m according to the appendix 3 of the TA Luft.

The data set includes lines with 16 entries each. They are separated by one single blank.

Sample:

```
* AKTERM Time series, International broadcast service, Nairobi. (KB1A)
```

* Period 01/1995 to 12/1995 * Data of Timbuktu, 11.04.2002 + Anemometerhoehen (0.1 m): 74 98 32 57 41 144 200 244 283 AK 10999 1995 01 01 00 00 1 1 210 56 1 3 1 -999 9 AK 10999 1995 01 01 01 00 1 1 220 64 1 3 1 -999 9 AK 10999 1995 01 01 02 00 1 1 260 68 1 3 1 -999 9 AK 10999 1995 01 01 03 00 1 1 270 65 1 3 1 -999 9 AK 10999 1995 01 01 04 00 1 1 250 64 1 3 1 -999 9 AK 10999 1995 01 01 05 00 1 1 250 64 1 3 1 -999 9 . . .

The entries mean:

Significance	Position of digits	Value range
Data Identifier	1 to 2	AK
Station number	4 to 8	00001 – 99999
Year	10 to 13	1800 – 2
Month	15 to 16	1 – 12
Day	18 to 19	1 – 31
Hour	21 to 22	0 – 23
Numerical empty field	24 to 25	0
Quality byte (Wind direction)	27	0, 1, 2, 9
Quality byte (Wind speed)	29	0, 1, 2, 3,9
Wind speed	31 to 33	0 – 360, 999
Wind speed	35 to 37	0 – 999
Quality byte (value status)	39	0 – 5, 9
Dispersion category according to Klug/Manier 41	41	1 – 7, 9
Quality byte (value status)	43	0, 1, 9
Mixture layer height (m)	45 to 48	0 – 9999
Quality byte (value status)	50	0 – 5, 9

The quality byte of the wind direction can assume the following values:

QDD	Significance
0	Wind direction in deca degrees
1	Wind direction in degrees, original in deca degrees
2	Wind direction in degrees, original in degrees
9	Wind direction is missing

QFF	Significance
0	Wind speed in nodes
1	Wind speed in 0,1 m/s, original in 0,1 m/s
2	Wind speed in 0,1 m/s, original in nodes (0,514 m/s)
3	Wind speed in 0,1 m/s, original in m/s
9	Wind speed is missing

The quality byte of the wind speed can assume the following values:

An entry of the dispersion category according to Klug/Manier is 7, if the dispersion category cannot to be defined. The failure identifier is 9.

The time is given in UTC (GMT). If the data are representative for a period of one hour, the entered time will be the end of the hour. In case data are missing, indeed station number and date are given, but the measure values are replaced with blanks. AUSTAL2000 interprets data sets as invalid or as be missing, if the value of Klug/Manier is 0.

Austal2000 ignores the Turner category and the ww-key number.

AKS file

Format: ASCII

The wind conditions are accepted in the form of a dispersion class statistics in the format of TA Luft. The file contains data about frequencies of wind direction, wind speed and dispersion classes in 1/100 per mille. For all wind directions in batches of 10-degree steps each, the wind speed classes' frequency in 9 levels and the dispersion classes' frequency in 6 groups are given. The file format is presented in the following table for the first dispersion class.

Extract from a Wind Dispersion Classes Statistics File

Name													
period													
TA Luft													
Year													
all cas	ses												
460	710	870	940	950	890	740	540	370	240	180	140	120	
160	240	300	320	320	300	250	180	120	80	60	50	40	
130 210 260 280 280 260 210 150 90							60	40	30	20			
0	0	0	0	0	0	0	0	0	0	0	0	0	

0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	
	•	•	•	•	-	-	•	-		-	-	-	

From the 6th row on are given the frequencies of each case. AUSTAL2000 accepts and recognizes statistics divided in groups of 10 degrees each. Therefore, the data must be presented in the following form:

Columns: Wind direction: from10 to 360 degrees in groups of 10 degrees each; and

Rows: arranged by wind speeds, calculation values according to TA Luft, i. e. 1; 1.5; 2.3; 4.5; 6; 7.5; 9; 12 m/s and then in blocks for each dispersion class I, II, III/1, III/2, IV, V.

All frequencies must be given in 1/100 pro mille, i.e. the sum of the frequencies = $100\ 000$.

WND-File

The dispersion model PROKAS requires the WND-File format as meteorological input data.

The wind conditions are accepted in the form of a dispersion class statistics in the format of TA Luft. The file contains data about frequencies of wind direction, wind speed and dispersion classes in 1/100 per mille. For all wind directions in batches of 10-degree steps each, the wind speed classes' frequency in 9 levels and the dispersion classes' frequency in 6 groups are given. The file format is presented in the following table for the first dispersion class.

							-						
Anem	ometer_	height	10	Statio	on Exam	ple							
460	710	870	940	950	890	740	540	370	240	180	140	120	
160	240	300	320	320	300	250	180	120	80	60	50	40	
130	210	260	280	280	260	210	150	90	60	40	30	20	
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	

Extract from a Wind Dispersion Classes Statistics WND-File

0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	

From the 6th row on are given the frequencies of each case. AUSTAL2000 accepts and recognizes statistics divided in groups of 10 degrees each. Therefore, the data must be presented in the following form:

Columns: Wind direction: from10 to 360 degrees in groups of 10 degrees each; and

Rows: arranged by wind speeds, calculation values according to TA Luft, i. e. 1; 1.5; 2.3; 4.5; 6; 7.5; 9; 12 m/s and then in blocks for each dispersion class I, II, III/1, III/2, IV, V.

All frequencies must be given in 1/100 pro mille, i.e. the sum of the frequencies = $100\ 000$.

The **measuring or anemometer** height in meter has to be given as the second string in the first row, which has to be separated by at least one space in both directions. This number is defined as the measuring height by PROKAS. The following characters are without effect and are used for comments.

Meteoroloy Monin Obukhov Lenth file

Format: dBase IV Field list (only required fields are listed):

field name	explanation	field type digits/Scale
WSPEED	Wind speed [m/s or nodes]	decimal 15/1
WDIR	Wind direction [degree]	decimal 15/1
LMO	Monin-Obukhov Length	decimal 15/1

Domain

Terrain Grid

The dialog Create Terrain Grid provides features to define the desired simulation area (Terrain grid) and store it in a shape file. This terrain grid shape file can be loaded in the <u>Austal Navigator dialog</u>.

It is possible to define terrain grid shape files by selecting a rectangle or by defining the centre of the grid and give the height and width extent. In any case the mesh size has to be defined.

Rectangle Button X,Y:

Tool to select grid area.

Button Get Selection:

Defines Extent of the terrain grid by getting the envelope of the selection of an existing and in ArcMap selected Terrain Grid shape. It is usefully to produce nesting grid shapes.

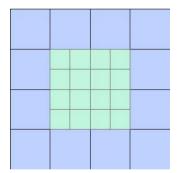
Centre Button X.Y:

Tool to select centre of the terrain grid.

Create Terrain Grid 🛛 🛛	Create Terrain Grid	×
Rectangle Center	Rectangle Center	
Lower left edge Upper right edge X [m] X [m] 250 Y [m] 700 Y [m] 370 Y [m] Mesh Size [m] 50 X Y Meshs X,Y 9 10 Get Selection	X center [m] Width [m] [479 1000 Y center [m] Height [m] [596 2000 Mesh Size [m] [50 XY Meshs X,Y 20	
Grid Shape	Grid Shape	
Grid Shape Polygon	Grid Shape Polygon	
🗙 Close 🛛 🗸 OK	🗙 Close 🔍 🗸 OK	

Terrain grid

The Terrain Grid dialog allows the user to define a grid of regular areas or receptor points.


For **Austal2000** here are two ways to define Terrain grid. First AUSTAL2000 creates one automatically or define it manually with Create Terrain Grid or entering Coordinates in the Terrain Grid Table in <u>AUSTAL2000/ Terrain grid</u>! Normally grid data means raster data, but it can also describe vector data with equidistant rectangles. All rectangles are touching the neighbours without a gap, it is a equable pattern. Create Terrain Grid produces vector based Grid shape files. These Grid shapes can be imported to AUSTAL2000 Navigator/ Terrain grid. **PROKAS** requires receptor points. Choose the shape type "PROKAS Receptor Grid Shape Point". The shape file can be imported to PROKAS Navigator/Receptorpoints

Using the Selecting Tool I it is possible to draw a rectangle in the map. According to the mesh size a grid apears in the Map. It is possible to move this grid with the mouse. Using the shift key at the keyboard the grid snaps to the rounded coordinates according to the magnitude order of the mesh size (e.g. mesh size: 50, the coordinate will be rounded to 10). The Coordinates and the mesh size corresonding to the grid in the map. If you draw a grid in the map, the extent of the grid will be entered into the formular. If you change coordinates or the mesh size in the formular the grid in the map will be adapted to this changes.

The mesh size of rectangles will proportional influence the accuracy in immission calculations.

Nesting

Nested grids are grids which are located in other grids. To nesting grids has the advantage that calculations specify in a given location. Therefore the accuracy increases at this area and the analysis becomes more sophisticated! For calculation with AUSTAL2000 it is absolute necessary, that the nested matrix is congruent to the outer matrix! From this follows that the mesh size of the nested grid is exact a multiple of 2 with the size of the outer grid!

Receptor Points 🛛 🕅	
Select Road Shape (*.shp)	60°
e\AalborgOestforbind_SimplLin_Tunnel560.SHP	
ID Distance [m] Add	
1 11 Remove	a a a
2 15 3 20 Remove All	o ogo
4 30	
5 50 Save Points	
Load Points	
Distance between Perpendiculars [m] 200	• • • • • •
Create Receptor Shape File	• •
C Create New C Append Receptors	
OML_Highway\Test-Art-File\ReceptorPoints.shp	
Create Receptorpoints	
X Close	
Status 0%	•••

Receptors along Roads

In the formular Receptor Points the user might create receptor points along roads. At least one distance parameter needs to be provided. The program considers single lines and parallel lines as well. The more distances the user provides the more points will be gradually created, orthogonal to the road segment. It is possible to create a new receptor point shapefile or add points to an existing point shapefile. The distance list can be saved and load in an distance file (*.pli).

Digitising Tools

The Digitising module of SELMA^{GIS} includes features to digitising the location, describing data and emission values of emissions sources. Point, street and area/grid sources must be digitised separately. The general method of digitising includes the following steps:

- 1. Make clear what type you want to digitise. Types: Points, Area, Grid or Street sources furthermore buildings
- 2. If a digitising shape doesn't exist create a new shape file according to the digitising type (Create Shape Files dialog) and load it as Layer in ArcMap.
- 3. Click the Command Digitising in the SELMA^{GIS} Toolbar and choose the type of digitising according to the Shape type.


4. After selection the Digitising Menu and the Digitising dialog according to digitising types (point, street, area/grid sources or buildings) appear.

Selma GIS Digit						×
Edit Tools 👻	* *	\swarrow	$\times \square$	Q	/	۲

5. Start Edits.

6. Choose the target layer in the editor toolbar and check the edit task (must be create new feature)

Important note:

- Open/save and close an SELMA^{GIS} edit session only with the commands of the SELMA^{GIS} Digitising Toolbar.
- The Digitising Tool in the Toolbar activate them self-according to the type of the chosen target layer (street, point or area /grid shape) during an edit session.

Create Shape Files

Create Shape	
Path and Shape File Name	
Emission Grid Shape	
🛛 🗶 Close	🗸 ок
Grid Shape Parameters Lower left edge-Upper right edge-	_
X [m]	Coord
	Mesh size [m]

Shape file name:

Defines the file name of the shape.

Shape type :

Defines the shape type.

Important note:

• Emission grid shapes can be created by choosing extent Coordinates with the Tool *Coord* and defining mesh size

Digitising Street Sources

Attr	ibutes Streets Sources 🛛 🛛 🛛
Sou	rce Name: Mohrenstrasse
Len	gth: 0
Sta	nding Data Emission Data
	Town
☑	Radebeul
	Year
☑	2012 +
	Update
☑	
	Name of Editor
	James Bond
_	Miscellaneous
	Main
_	Name of Informant
	Municipality Radebeul
	Select All Unselect All
	Reset all
*	Save/Close 🛃 📝 Apply

Standing Data:

Defines administrative Input data.

Control Area:

See Control Area

Attributes Streets Sources 🛛 🗵	
Source Name: Mohrenstrasse	
Length: 0	
Standing Data Emission Data	
▼ *VEH [a.m./24h] 20000	
▼ *HDV [rel. 01] 0.1	
* Traffic Situation	Attributes Streets Sources
AO-Fern100	Source Name: Mohrenstrasse
Streetcanyon 106	Length: 0
▼ *Height/width [m]0	Emission Data
▼ * Sig [m] 1.5	▼ *VEH [a.m./24h] 10000
✓ *Lanes 2	▼ *HDV [rel. 01] 0.1
Speed Limit [km/h] 50	Traffic Situation
Actual Speed 12 💌	A0-Fern70
Category AO 💌	Streetcanyon 106
Time Series File	▼ *Height/width [m] 15
PlanSD3.dbf	▼ * Sig [m] 1.5
Select All Unselect All	Select All Unselect All
Reset all	Reset all
🔺 Save/Close 🛛 🛃 📝 Apply	🔺 Save/Close 🖉 📝 Apply

Emission Data:

The Dialog differs according to the selected scheme (left figure scheme AUSTAL and right PROKAS) Defines parameter for traffic emission calculation and time series file. The entries of the pull down menu <u>Traffic Situation</u> are read from the <u>Emission Factor file</u> which is defined in the <u>Configuration Dialog</u>.

Time Serie:

Defines the <u>Time Series file</u> (Type: dBase IV, Streets) name. The Time series file has to be located in the same directory like the emission shape.

Important note:

- For the calculation acquired parameters are signed with *
- You can add automatically the number of the row to the source name. Define it in the <u>Configuration</u> <u>Dialog</u>.
- Each Line has to be created only with two points. Also use the task option in the ArcGIS Edit Toolbar "Create 2-point linefeature"

Digitising Point Sources

🗾 At	tributes Poin	t Sourc	e _ 🗆 🗙			
Stan	Standing Data Emission Data					
	Source Name:					
	Stack_1					
	Street and Hou	ise Num	nber			
◄	Mohrenstr. 14					
	Postcode	Town				
✓	D-01445	Radeb	beul			
	Year					
◄	2003	-				
	Update					
☑	24.11.2005	•				
	Name of Edito	r				
◄	HL					
	Miscellaneous					
✓	dangerous					
	Name of Inform	nant				
◄	007					
	Select all		Inselect all			
			niselect all			
	Hes	et all				
🔥 S	ave/Close	•	Apply			

Standing Data:

Defines administrative Input data

Control Area:

See Control Area

🚺 Attributes Point Source 🛛 🔲 🗙
Standing Data Emission Data
▼ * Chimney Height [m] 35 ▼ Outer Chimney Diameter [m] 0 ▼ * Inner Chimney Diameter [m] 1 ▼ * Exhaust Gas Temp. [*C] 45 ▼ * Exhaust Gas Velocity [m/s] 5 ▼ Chimney Cooling Tower * * Volumeflow Rate [Nm²/h] 20000
Rate of Emission Time Series File T3_TS_Jan_Points.dbf Select all Unselect all
Beset all
Apply 🔶 🔶

Selma^{GIS} Manual

Emission Data:

Defines parameter for plum rising and emission rates and time series file.

Emission Rate:

Open the emission rate dialog.

Time Series:

Defines the <u>Time Series file</u> (Type: dBase IV, Point/area/Grid) name. The Time series file has to be located in the same directory like the emission shape.

Rate of emission ..:

Opens the emission rate dialogue to enter annual mean emissions.

Important note:

- For the calculation needed parameters are signed with *
- You can add automatically the number of the row to the source name. Define it in the <u>Configuration</u> <u>Dialog</u>.

Digitising Area/Grid Sources

🛃 Attributes Area/Grid s 💶 🗖 🗙
Standing Data Emission Data
Source Name:
Area_2
Street and House Number
An der Roßweid 3
Postcode Town
D-76229 Karlsruhe
Year
2003
Update
24.11.2005
Name of Editor
✓ TF
Miscellaneous
Dust
Name of Informant
007
Select all Unselect all
Reset all
Apply

Standing Data:

Defines administrative Input data

Control Area:

See Control Area

Attributes Area/Grid s					
 Height above Ground [m] Height [m] 15 					
Rate of Emission					
Time Series File T3_TS_Area.dbf					
Select all Unselect al	=				
Reset all					
Ap	ply				

Emission Data:

Defines height, emission rates and time series file.

Emission Rate:

Open the emission rate dialog.

Time Series:

Defines the <u>Time Serie file</u> (Type: dBase IV, Point/area/Grid) name. The Time series file has to be located in the same directory like the emission shape.

Rate of emission ..:

Opens the Emission Rate dialoge to enter annual mean emissions.

Important note:

• For the calculation needed parameters are signed with *.

• You can add automatically the number of the row to the source name. Define it in the <u>Configuration</u> <u>Dialog</u>.

Digitising Buildings

Attributes buildi ? 💶 🗙					
Name					
height		[m]			
📩 Sa	ve/Close		🖉 Apply		

Emission rate dialog

Emission of source 1	×
Gases PM + As-PM Pb-PM + Cd-PM	Ni-PM + TI-PM Hg-PM + Wild card-PM
Unit	
Gas 0 S02 0 N0x 5.0 N0 3.4 N02 0.5	Gas Tetrachloroethene 0.5 Hydrogen fluoride 0.8 NH3 11 Ho (pas phase) 1.3
Benzene 0.2	Hg (gas phase) 1.3 Wild card (gas ph.) 1.6 Apply

Unit:

Defines the unit for the input emission rate. In shapes attribute table emission rate is stored as kg/h.

input fields:

defines emission rates for each chemical component.

The first record card '**Gas**' supplies input fields for the gases: sulphur dioxide (SO₂), nitrogen monoxide (NO), nitrogen dioxide (NO₂), nitric oxide (NOx), benzene, tetrachlorethen, hydrogen fluoride (which is specified as fluorine), ammonia (NH₃), mercury (Hg), as well as for an inert substance (Wild-Card Gas). The units can be entered in grammes per second (g/s), kilogrammes per hour (kg/h) or tonnes per year (t/a). Click on the selection fields of these units to enter the data. The edit fields vary from 0 to 10 000. (The programme defines the substance NOx separately from the substances NO and NO₂. That means, the same emissions should be specified like by NO and NO₂, according to the calculation rule NOx = NO2 + 1.53*NO.)

The next four record cards supply input fields for different kinds of dust. They are: general dust (PM), arsenic dust (As), lead dust (Pb), cadmium dust (Cd), nickel dust (Ni), thallium dust (TI), mercurial dust (Hg) and any further dust (Wild-Card Dust).

Important note:

• The Wild-Card gas and the Wild-Card dust are the same substance. That means, if you enter a mass flow for gas and for dust as well, the substance will have a deposition velocity and sedimentation velocity and through them the concentration results will be influenced.

Different grain size classes (from 1 to 4 and unknown) should be distinguished for dust. When the grain size diameter of dust is greater than 10 μ m and its partition in classes 3 and 4 is unknown, then choose 'unknown' in the class description. Airborne particles (PM10) are represented with the grain sizes 1 and 2. Enter the emission for each grain size class of dust in the units: grammes per second (g/s), kilogrammes per hour (kg/h) or tonnes per year (t/a).

Auastal2000 deposition calculation uses standard grain size classes with the according deposition velocity (vd) and sedimentation velocity (vs):

	Class da µm	vd in m/s	vs in m/s
1	< 2,5	0,001	0,00
2	2,5 - 10	0,01	0,00
3	10 - 50	0,05	0,04
4	>- 50	0,20	0,15

Digitising Menue

Þ

Select Tool:

Select Features of digitising shapes. Selecting a feature all attributes appear in the corresponding digitising dialog. Also in a non edit session it is possible to select features which are selected in the Content Menu of ArcMap. <u>Enabled:</u> If a SELMA^{GIS} digitising shape is selected in the content menu of ArcMap or in the pull down menu Target of the Edit Toolbar of ArcMap.

Edit Tool:

Selects and edits features during an edit session. Edit features by double click. (more about editing see ArcMap help).

<u>Enabled:</u> During Edit session and if a SELMA^{GIS} digitising shape is selected in the pull down menu Target of the Edit Toolbar of ArcMap.

Þ

Snap Tolerance:

Digitising Street sources it is useful to define a snap tolerance and snap

edges. The snap tolerance is defined by the radius of an opened circle with the mouse using the Snap Tolerance Tool. The Snap edges are defined by using the Snapping window of ArcMap. It is opened through the Snapping menu.

For Streets it is recommended to check the check boxes End for each shape you want. (More about Snapping options see ArcMap help) <u>Enabled:</u> During Edit session and if a SELMA^{GIS} Street source shape is selected in the pull down menu Target of the Edit Toolbar of ArcMap.

Rotate:

Rotates any selected feature.

Enabled: During Edit session and a feature is selected.

Hint: Pressing key "a", it opens an edit field for entering the rotation angle in degrees.

Split:

Splits Streets take the attributes from the non-split feature. <u>Enabled:</u> During Edit session and if a SELMA^{GIS} Street source shape is selected in the pull down menu Target of the Edit Toolbar of ArcMap and a line feature is selected.

Rectangle:

Creates a Rectangle Polygon feature. All attributes of the digitising dialog are stored automatically.

<u>Enabled:</u> During Edit session and if a SELMA^{GIS} Area/Grid source or Building shape is selected in the pull down menu Target of the Edit Toolbar of ArcMap

Bezier:

Creates a user defined Polygon feature. All attributes of the digitising dialog are stored automatically.

<u>Enabled:</u> During Edit session and if a SELMA^{GIS} Building shape is selected in the pull down menu Target of the Edit Toolbar of ArcMap

9

Line:

Creates a line feature. All attributes of the digitising dialog are stored automatically.

<u>Enabled:</u> During Edit session and if a SELMA^{GIS} Street source shape is selected in the pull down menu Target of the Edit Toolbar of ArcMap. Remark: Each Line has to be created only with two points. Also use the task option in the ArcGIS Edit Toolbar "Create 2-point linefeature"

Point:

Ο

Creates a Point feature. All attributes of the digitising dialog are stored automatically.

<u>Enabled:</u> During Edit session and if a SELMA^{GIS} Point source shape is selected in the pull down menu Target of the Edit Toolbar of ArcMap.

Digitising Dialog (Control Area)

All digitising dialogs have the control area above.

Reset all:

Changes all entries to the standard values.

Check boxes:

Any Entries in of the digitising dialog owns a Check box. Only if the corresponding check box is checked the entries will be stored in the attributes table of the digitising shape.

Select all:

Checks all check boxes.

Unselect all:

Uncheck all check boxes.

Save/Close:

Closes the edit session. Before closing it will be asked if edits has to be saved.

Apply:

Stores all input parameters of the dialog in the attribute table of the shape according to the selected geometry. It is also possible to select many geometries and store dialog parameters to all selected geometries.

AUSTAL2000

SELMA^{GIS} contains a wind and dispersion field model AUSTAL2000 module (<u>www.austal.de</u>). It is provided as a module under the ArcMap[™] GUI. AUSTAL2000 is the official German Federal Environmental Agency air pollution dispersion model and meets the demands contained in appendix 3 of the German "Technical Instruction Clean Air" (TA Luft). Since October 2002 this law passed the German legislative bodies and the code AUSTAL2000 was made available.

AUSTAL2000 contains a 3-dimensional Lagrangian particle model (according to the German guideline VDI 3945 sheet 3), allowing to calculate as well concentration time series as statistical concentration parameters. AUSTAL2000 is able to describe dispersion during different physical conditions in the atmospheric boundary layer, under all types of atmospheric stability conditions. AUSTAL2000 contains a flow model being able to cope with complex terrain (mountains, hills) and also the effects of buildings. A detailed description of AUSTAL2000 is available in the internet (see: www.austal.de, in German and English). The <u>current</u> <u>Manual</u> you find in the installation of SELMA^{GIS}.

AUSTAL2000 allows up to 300 x 300 grid points in the horizontal direction, i.e. the grid resolution for a simulation of a region of 25 km x 25 km is approx. 85 m. With SELMA^{GIS,}s Terrain Factory module, the available terrain data are interpolated to the grid with a resolution necessary for the simulation selected by the user.

AUSTAL2000 uses state of the art boundary layer parameterization based on guideline VDI 3783 sheet 8 (Turbulence parameters for dispersion models supported by measurement data). The Monin-Obukhov length, which is an input parameter, can for example be calculated as a function of the Klug/Manier stability class and the roughness length z0. The mixing height can be given explicitly in the AKTerm file (see below) or is calculated as a function of the Monin-Obukhov length and the friction velocity.

AUSTAL2000 expects as input either

 a meteorological time series in the so called AKTerm format (hourly meteorological data from one meteorological station) or • the frequency distribution of wind speed, wind direction and dispersion category from one meteorological station.

Additionally AUSTAL2000 needs as physiographic parameters

- the topography height
- the aerodynamic roughness of the surrounding
- building information (building contours and building height)

AUSTAL2000 can treat the dispersion of the following gases:

- SO2, NO, NO2, NOx (given as NO₂), Benzene, Chloroethane,
- Hydrogen Fluoride (given as F), NH₃, Hg and 1 wild card substance or odour

The following different particulate matters (dust, particles) can be distinguished:

 Dust (general), As, Pb, Cd, Ni, Hg, TI and 1 wild card substance

Five different particle size classes can be specified (Class 1 to 4 and class "unknown particle size"). Emission data for all sources can be given as time series. AUSTAL2000 is able to handle at least 500 point and area sources and at least 5000 line sources. Emissions can be defined as

- Point source
- Area source
- Line source and
- Grid based sources

AUSTAL2000 contains a diagnostic wind field model to cope with complex terrain. Diagnostic wind field models provide mass-consistent area covering wind fields for complex terrain on the basis of measured data. Diagnostic wind field models are recommended up to a terrain slope of 1:5. AUSTAL2000 has an interface in order to be able to input meteorological fields from other models e.g. from dynamical (prognostic) wind models (Prerequisite: The meteorological fields must satisfy massconservation).

Controls and Commands

All functions and Dialogs of SELMA^{GIS} can be accessed with Command buttons in the SELMA^{GIS} Toolbar. You get the toolbar by selecting

"SELMA^{GIS} 9" in the context menu which is opened by clicking the right mouse button in the menu area of ArcMap.

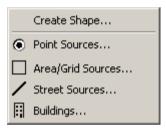
SELMA^{GIS} Toolbar

SelmaGIS 9			×
Selma GIS 🔻	AUSTAL2000 -	Emission 👻 Meteo 👻 Domain 👻 Results 👻	Digitizing 🔫

- SELMAGIS Menu for managing SELMAGIS project
- AUSTAL2000 Menu for prepare/execute AUSTAL2000
 dispersion model
- Emission Menu for Calculating road traffic emissions and generate emission time series
- Meteo Menu with import Feature
- Domain Menu for preparing terrain grid
- Results Menu for read results of Dispersion models
- Digitising Menu with digitising tools based on ESRI shapes

AUSTAL2000

Navigator	


Emission Factory

Street Sources	►
Point Sources	►
Area Sources	⊁
Grid Sources	⊁

Meteorology Factory Show Meteo File... Import AKTerm... Domain Terrain Create... MARS/MUSE Topo file... Results

Digitising

Input fields for shape files or ASCII support drag&drop files coming from the file manager (e.g. Explorer) or from ArcMap's table of content (TOC). Double click on the white area or click on the directory icon opens an open/save dialog or select directory dialog. Click on the world icon add the shape file to the TOC of ArcMap as a feature layer.

Austal Navigation

For each group of AUSTAL2000 input data AUSTAL2000 dialog provides one panel. Navigation is possible by clicking on list items in the Navigation bar left hand.

Emissions

Time series or annual mean:

Defines if AUSTAL2000 calculates with annual mean emission or time series emission.

Emission shapes:

All different emission shapes are loaded separated as sources type. Every emission shape file are defined by file name by clicking on the open button or double click on the edit fields.

2 AUSTAL 2000		
Project Name		🗙 Close
Emissions Terrain Meteorology Monitor points Start AUSTAL 2000	time series Street Sources ✓ Point Sources Area Sources Grid Sources □	
Status		1.

Important note:

- Check boxes must be activated for each source type which should be considered.
- For time series calculation must be defined time series file names and annual mean emissions in Shape files.
- For Street emissions generate emission with Emission Factory Street Emission before.
- For annual mean calculation must be define only annual mean emissions.

Terrain

The AUSTAL Terrain dialog provides an import for supplied elevation models, buildings, and land use data.

Data are interpolated to the required horizontal grid resolution by AUTAL2000 automatically. Therefore the user selects the desired simulation area from several hundreds of meters up to 25 km and SELMA^{GIS,}s Terrain Factory module generates the appropriate terrain input file.

Project Name	
Emissions Terrain Meteorology Monitor points Start AUSTAL 2000	Topo/Roughness Terrain grid Buildings Roughness Roughness Length 1.50 : broadleaf forests, mixed f [02 m] ✓ Calculate Roughness Get Extent from ○ Emission shapes ● Terrain grid Land Use File Land Use Key LITHUANIA ✓ Calculate Sig

Roughness length:

Defines roughness length. The roughness length can be defined according to the land cover type which are listed in the following table.

0	
z0 in m	Land cover types with CORINE–Classes
0.01	Beaches, dunes, sands (331); Water bodies (512),
0.02	Dump sites (132); Pastures (231); Natural grasslands (321); Sparsely vegetated areas (333); Salt marshes (421); Intertidal flats (423); Water courses (511); Estuaries (522)
0.05	Mineral extraction sites (131); Sport and leisure facilities (142); Non- irrigated arable land (211); Glaciers and perpetual snow (335); Coastal lagoons (521)
0.10	Airports (124); Inland marshes (411); Peat bogs (412); Sea and ocean (523)
0.20	Road and rail networks and associated land (122); Green urban areas (141); Vineyards (221); Complex cultivation patterns (242); Land principally occupied by agriculture, with significant areas of natural vegetation (243); Moors and heathland (322); Bare rocks (332)
0.50	Port areas (123); Fruit trees and berry plantations (222); Transitional Woodland-shrub (324)
1.00	Discontinuous urban fabric (112); Industrial or commercial units (121); Construction sites (133); Coniferous forest (312)
1.50	Broad-leaved forest (311); Mixed forest (313)
2.00	Continuous urban fabric (111)

Calculate Roughness :

Generates representative Roughness length based on land use data grid (Format ESRI ASCII grid) and an area according to the extent of the defined terrain grid or all emission shape files. Requires a defined Terrain Grid of at least one Emission file.

Topography:

defines elevation grid file (Format ESRI ASCII grid).

Important note:

• Check boxes *Topography* must be Austal2000 should consider topography.

The Terrain Grid defines the extent of the dispersion modelling. AUSTAL2000 allows up to 300 x 300 grid points in the horizontal direction, i.e. the grid resolution for a simulation of a region of 25 km x 25 km is approx. 85 m. Furthermore nesting is possible.

There are two ways to define Terrain grid. First AUSTAL2000 creates one automatically or define it manually with <u>Create Terrain Grid</u> as a shape or entering Coordinates in the *Terrain Grid Table* in.

Project Name	
 ☐ Emissions ☑ Terrain ☐ Meteorology ☐ Monitor points ☐ Start AUSTAL 2000 	Topo/Roughness Terrain grid Buildings Image: Constraint of Auto-Nesting Image: Constraint of Auto-Nesting Image: Constraint of Grids Image: Constraint of Grids Image: Constraint of Meshs in X 100 Amount of meshs in X 100 Amount of meshs in Y 50 Western edge X [m] Image: Constraint of Grids Image: Constraint of Grids Image: Constraint of Grids Image: Constraint of Tenshs in Y 50 Western edge X [m] Image: Constraint of Grids Image: Constraint of Grids Image: Con
Status	Add from Shape

No-Auto nesting/Auto-Nesting:

For choosing if AUSTAL2000 should generate an own Terrain grid with nesting or without nesting.

Terrain grid list:

For nesting different grids are possible. The nest with smaller horizontal mesh must be added at first. Nested grids are grids which are located in other grids. To nesting grids has the benefit that calculations specify in a

given location. Therefore the accuracy increases at this area and the analysis becomes more sophisticated! For calculation with AUSTAL2000 it is absolute necessary, that the nested matrix is congruent to the outer matrix! From this follows that the mesh size of the nested grid is exact a multiple of 2 with the size of the outer grid!

Add from shape:

Adds terrain grid from Shape which are generated with the <u>Terrain</u> <u>Factory/Terrain grid</u> dialog.

Reset all:

Deletes all entries in the terrain grid list.

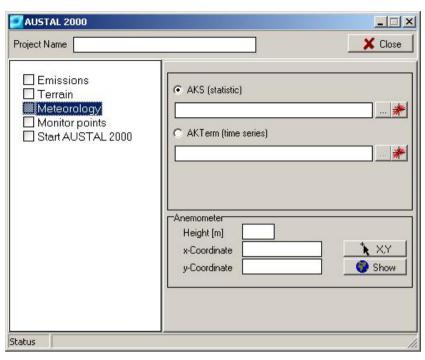
Important note:

• If *Auto-Nesting* is chosen, a user terrain grid couldn't be defined. The Use Terrain grid Field will be disabled.

AUSTAL 2000		- IX
Project Name		X Close
 Emissions ✓ Terrain Meteorology Monitor points Start AUSTAL 2000 	Topo/Roughness Terrain grid Buildings	
Status		h.

Buildings:

defines building shape which digitised with SELMA^{GIS} *Digitising Tools*.


No Nesting:

If Austal2000 consider buildings it is useful to let generate an automatically Terrain grid. Therefore AUSTAL2000 always generates nested grids. For not generate nested grids check *No Nesting.*

Important note:

• Check box Buildings must be Austal2000 should consider buildings.

Meteorology

AKS:

Defines the file name of the dispersion class statistics

AKTerm:

Defines the file name of AKTerm file, which stores in each row a single hour of the year with meteorological data.

Height:

Defines the height of the anemometer.

y,x Coordinates:

Defines the local Coordinates of the anemometer.

XY:

Tool to get Coordinates from ArcMap.

Show/Hide:

Tool to show/hide Coordinates in ArcMap as an cross.

Important note:

• For *time* series calculation it must be defined a AKTerm file

🔍 Unbenannt - ArcMap - ArcView	_ 8 ×
Elle Edit View Insert Selection Iools Window Help	
│ D ☎ 🖬 番│ ୬ 🖻 ☎ X ∽ ∼ ♦ □□ 🔄 📝 🎣 ७ ◘ 🕅 ₩ │ Q Q 💥 ☎ ♡ � ♦ ⇒ № ╃ Ѧ № 0 ╇ ≙ ⊛ 匝	•
Editor 🔻 🕨 🖍 🔻 Task: Greate New Feature 💽 Target: 💽 🖉 🏹 🖓 🖽	
Selma GIS ▼ AUSTAL2000▼ Emission Factory ▼ Meteorology Factory ▼ Terrain Factory ▼ Results ▼ Digitizing▼	
AUSTAL 2000	
Project Name	
Emissions Nr. X Y h (m) Name	
Terrain 1 1059.88 469.06 9 Text	
Monitor points	
Start AUSTAL 2000	
Delete All 🗽 X.Y	
Delete Hide	
Status //	
Display Source Selection 0 D C II I	
Drawing 🔻 📐 🖗 🔲 🍷 🗛 🛎 🌠 🖉 Arial 🖉 10 💌 B Z 🖳 🛧 🏝 🛎 💆 🛨 🛨	
922.16 193.61 Unknown Units	

Monitor Points

Define monitor points to get more information (time series result as dBase file) of the results.

XY:

Tool to add monitor points in ArcMap.

Show/Hide:

Tool to show/hide Coordinates in ArcMap as an cross.

AUSTAL 2000	
Project Name Test 3	K Close
Emissions Terrain Meteorology Monitor points Start AUSTAL 2000	 AL 2000 (only input files)
Status	
placus	

Start AUSTAL2000

Quality:

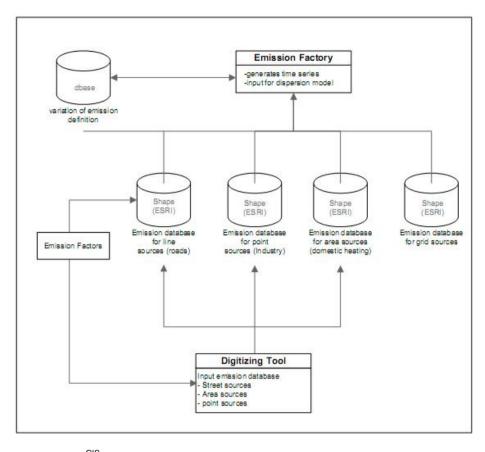
The entry of the quality level appoints the release rates of particles. The input can be defined from -4 to 4.

Increasing one step causes a doubling of the number of particles and with it a reduction of the statistical uncertainty (scattering) of the factor 1/(root of 2). Indeed the calculation time doubles too. The reduction of the value leads to the opposite. An AKS is normally calculated with at least 43 000 000 particles and an AKTerm with at least 63 000 000 particles.

random seed:

Defines the first random count for the dispersion model.

Start AUSTAL2000 (only input files):


generates AUSTAL2000 input files without starting AUSTAL2000.

Start AUSTAL2000:

generates AUSTAL2000 input files and starts the dispersion model AUSTAL2000.

Emissions Factory

Emission data are held in database ESRI Shape file format separated for line (roads), point (e.g. industry), area (e.g. domestic heating) and grid sources. The geographical position for each source is stored in the ESRI Shape file and the specific emission data and describing data are stored in dBase files that are part of the Shape format. The structure of the specific shape files are described in chapter <u>AUSTAL File Formats</u>.

The SELMA^{GIS} module emission factory prepares emission data as input for the dispersion module AUSTAL2000.

It is possible to run AUSTAL2000 with annual mean emission or time series emissions.

The **annual mean** emission must be stored in the emission source shapes points, area and grid source shapes the input of the annual mean emissions realised by the Digitising Tools of SELMA^{GIS}. For street sources the module <u>Street emission</u> calculates annual mean emission for and store it in the emission shape.

For working with **time series** emissions it needs to generate time series files which are standardised (values for each hour in the year, the sum of one year =100). The standardised time series must be allocated to each source (the filename of a time series is stored in the emission source shape). The real emission time series which is used for AUSTAL2000 is generated by the <u>Street Emission</u> (street sources) or <u>AUSTAL2000</u> (point, area and grid sources). The time series will be multiplied with the annual mean emissions.

The emission factory provides a time series generator for <u>street sources</u> and <u>point</u>, <u>area/grid</u> sources.

The emission factory module reads the emission database and generates emission time series considering the above mentioned constraints. The database input must be prepared by the user, assisted by the SELMA^{GIS} module Digitizing Tool . Point and area source data can be imported from dBase files with the separate delivered program dBaseToSelmaShape.exe (SELMA^{GIS} CD\Tools).

Traffic emissions can be estimated using vehicle emission factors which are depended to the region vehicle fleet an specific traffic situations. The emission factors must be create in a separate project. COPERT III can be used to generate emission factors. The program Cop2Sel_int.exe (SELMA^{GIS} CD\Tools) provides an interface which stores emission factory files for SELMA^{GIS}.

Generate Time Series Streets

Time series can be opened and saved with the Dialog Time Series Streets (Command: Emission Factory/Streets/Time Series). Time series files are shown in the table for each hour in the year the proportion (standardised to 100%) of all vehicles (VEH) and heavy duty vehicles >3.5 t (HDV). Working days are displayed black, Saturdays magenta Sundays blue and days with no emission red.

🗾 Time Series S	streets		x		
File Tools					
	VEH %	HDV %			
2005.01.29.13	0.00308	0.01019			
2005.01.29.14	0.00325	0.01074			
2005.01.29.15	0.0027	0.01211			
2005.01.29.16	0.00267	0.01019			
2005.01.29.17	0.00231	0.00908			
2005.01.29.18	0.00214	0.00826			
2005.01.29.19	0.00169	0.00633			
2005.01.29.20	0.00145	0.00523			
2005.01.29.21	0.00109	0.00358			
2005.01.29.22	0.00086	0.00303			
2005.01.29.23	0.00069	0.0022			
2005.01.30.00	0.00061	0.00714			
2005.01.30 01	0.00053	0.00467			
2005.01.30.02	0.00032	0.00385			
2005.01.30.03	0.00024	0.00247			
2005.01.30.04	0.00024	0.0033			
2005.01.30 05	0.00019	0.00302			
2005.01.30.06	0.00024	0.00192			
2005.01.30 07	0.00068	0.00687			
2005.01.30.08	0.00147	0.00934			
2005.01.30.09	0.0027	0.01209			
2005.01.30 10	0.00306	0.01126			
2005.01.30 11	0.00292	0.01456			
2005 01 20 12	0.00211	0.00965			
🗶 <u>C</u> lose 🛛 🗸 OK					

Times series can be generates with the Dialog *Emission Cycles Streets* (Command: Tools/ Generate Time Series). Time series are be defined with year, week and day cycles with the proportion (standardised to 100%). For each cycle exists a register.

All entries are can be saved/loaded in a vtc-file (Command: File/save, open).

Year cycle:

Year: Definition of the represented year

Grid: Year cycle defined by monthly traffic separated in VEC and HDV.

Week cycle:

Grid: Week cycle defined by daily traffic separated in VEC and HDV. *Holiday list:* Any day of the year can be redefined to a typical Saturday (enter Sat) or Sunday (enter Sun). Furthermore it is possible to define any day of the year without emissions (enter Off).

Day cycle:

Grid: Day cycle defined by hourly traffic separated in VEC and HDV.

Emissia ile	on Cycles Stre	eets		Emission File	n Cycles S	itreets		<u>- 🗆 ×</u>
	1				Arteste au	u. I.a.	. 1	
rear cycle	Week cycle	Day cycle		Year cycle		cie Day cy	cie	
				Week cyc	le			
Year	2005 ÷				VEH	HDV		
				Mon	5	5		
-		HDV		Tue	5	5		
Jan		4.93151		Wed	5	5		
Feb		5.75342		Thu	5	5		
Mar		6.57534		Fri	5	5		
Apr		8.21918		Sat	4	1		
May	9.86301	100 C		Sun	3	1		
Jun	13.15068	and the second			32	27		
Jul	12.32877			Standar	dise			
Aug	11.50685							
Sep	10.68493	and the second		-Holiday lis				
Oct	5.75342	and the second se		a second second second	a		-	
Nov	5.75342			Date	Day Ty	pe	<u>A</u> dd	
Dec	2001 C 100 C 100 C 100 C	5.47945		2005.07.3	1212-1202-020		Delete	
		100		2005.07.			Delete all	
Standa	rdise:			2005.07.1	31 Sun			
							Load	
							<u>Save</u>	
				-				
X <u>C</u> le	ose		Apply	X <u>C</u> lo:	se		1	Apply

	Mon		Tue		Wed	
[h]	VEH	HDV	VEH	HDV	VEH	HDV
0-1	0.36101	0.9994	0.36101	0.9994	0.36101	0.9994
1-2	0.72202	0.9994	0.72202	0.9994	0.72202	0.9994
2-3	1.08303	0.9994	1.08303	0.9994	1.08303	0.9994
3-4	1.44404	1.4991	1.44404	1.4991	1.44404	1.4991
4-5	1.80505	1.69898	1.80505	1.69898	1.80505	1.6989
5-6	2.16606	1.9988	2.16606	1.9988	2.16606	1.9988
6-7	2.52708	5.43674	2.52708	5.43674	2.52708	5.4367
7-8	2.88809	7.39556	2.88809	7.39556	2.88809	7.3955
8-9	3.2491	8.28503	3.2491	8.28503	3.2491	8.2850
9-10	3.61011	10.23386	3.61011	10.23386	3.61011	10.233
10-11	3.97112	6.74595	3.97112	6.74595	3.97112	6.7459
11-12	4.33213	8.52489	4.33213	8.52489	4.33213	8.5248
12-13	4.69314	8.04517	4.69314	8.04517	4.69314	8.0451
13-14	5.05415	9.25445	5.05415	9.25445	5.05415	9.2544
14-15	5.41516	8.20508	5.41516	8.20508	5.41516	8.2050
15-16	5.77617	5.03698	5.77617	5.03698	5.77617	5.0369
16-17	6.13718	3.328	6.13718	3.328	6.13718	3.328
17-18	6.49819	2.51849	6.49819	2.51849	6.49819	2.5184
18-19	6.85921	2.59844	6.85921	2.59844	6.85921	2.5984
19-20	7.22022	1.29922	7.22022	1.29922	7.22022	1.2992
20-21	7.58123	1.29922	7.58123	1.29922	7.58123	1.2992
21-22	7.94224	1.29922	7.94224	1.29922	7.94224	1.2992
22-23	8.30325	1.29922	8.30325	1.29922	8.30325	1.2992
23-24	0.36101	0.9994	0.36101	0.9994	0.36101	0.9994
	100	100	100	100	100	100

Generate Time Series Point Sources

Analogue to Time series Streets.

Generate Time Series Area Sources

Analogue to <u>Time series Streets</u>.

Generate Time Series Grid Sources

Analogue to <u>Time series Streets</u>.

Calculation Street Emission

The Dialog Emission Streets provides features to calculate emissions occurred by street traffic. For the calculation street source shape and a emission factor file is needed. Please make sure, that substances are selected in the <u>SELMA^{GIS} Configuration dialog</u> and the selected Emission names of the <u>emission factor file</u> are the same as defined in the street emission source shape.

There are two possibilities to calculate street emissions:

Calculating average emissions (annual mean):

Calculates an average emission rate and store it to the street source shape file.

Calculating time dependent emissions (time series):

Calculates an average emission rate and store it to the street source shape file and generate an emission time series, which depends to the time series created in the Emission Factory /Streets. The time series dBase file must be stored for each segment in the street source shape file. The generate Time series emission files are stored in the same folder as the street source shape file. They are needed for AUSTAL2000 calculations.

Emission Streets	X
Streets Shape file (*.shp)	
C:\60285_CARDS\play\T3\T3_Streets.shp	
Emissionsfactors (*.eft)	
C:\60285_CARDS\play\T3\2002_HB21.eft	
Year 2005	
- Mode	
 Calculate average emissions Calculate time dependent emissions 	s
	_
Cancel Calculate Emissions	

Street shape file:

Define the street shape file name.

Emission factors:

Defines the emission factors file name.

Mode:

Defines calculation mode

Year:

Defines Year of the emission factor file

Results

AUSTAL2000 results are stored in various files in the Austal2000 result directory. The Result module of SELMA^{GIS} can import the results to ArcMap. The following functionality is provided:

- 1. Reading AUSTAL2000 immission concentrations and convert it to shape format. Optionally it is possible to add preload concentration.
- 2. Reading monitor point time series immission concentrations.
- 3. Generate isolines shapes based on the point grid immission shape

Results AUSTAL2000

d Index:	01 💌	Statistical Uncert	ainty		Number of boundary Boxes, 🛛 🍧 📀 Polygon Shape C Point Sha which will NOT be exported:
ction Su	bstances / C	olumns			
	Unit	Dmna File Name	Shape Column Name	Factor	Statistical Parameter
BZ	<u> </u>		, idine		
	µg/m³	bzl-j00z01	bzl_j00z01	1	Annual mean of concentration of additional load
	a second		1		
	µg/m³	no2-j00z01	no2_j00z01	1	Annual mean of concentration of additional load
	µg/m³	no2-s00z01	no2_s00z01	1	Maximum hourly mean exceeded 00 times of additional load
	µg/m³	no2-s18z01	no2_s18z01	1	Maximum hourly mean exceeded 18 times of additional load
NC	IX .				
	µg/m³	nox-j00z01	nox_j00z01	1	Annual mean of concentration of additional load
PB	r,				
Unche	ck All	Contract All			

Austal Result Path:

Defines the directory of the AUSTAL2000 results. After loading the AUSTAL2000 result directory the system identify which chemical components, nesting results and which heights are available.

Grid Index:

Grid Index defines the nesting number of the grid which will be exported. To export all nesting in one shape file is possible as well

Display Type

Defines which Shape type will be produced. Points shape or Area shapes are possible.

Result shape:

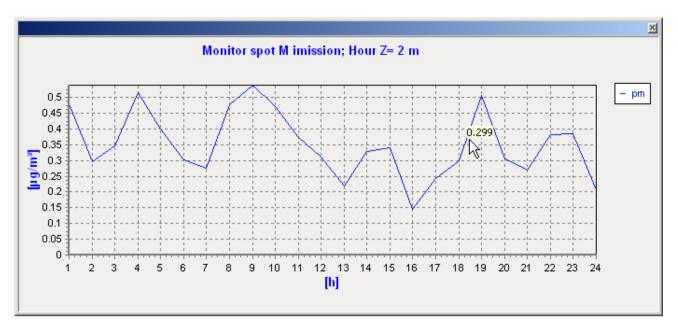
Defines the file name of the Austal2000 result shape file.

Monitor points

Results Austal2000 Result Dir	
Read results Monitor points Preload	
Monitor point Shape	
Select Monitor point	d Monitor points

Monitor Point Shape:

Defines the file name of the result monitor point shape. It is only visible if there are monitor point results in the AUSTAL2000 result directory. Immission concentration time series are stored separately by monitor point name in dBase files under the directory "MoniDBF" which is placed under the same directory of the monitor point shape. Monitor dBase time series are possible to import in the Excel templates which are available on the SELMA^{GIS} CD /Tools/ excel Templates.


Select Monitor point:

Tool to select a monitor point in a loaded monitor shape in ArcMap. Usage: 1. Select the monitor shape layer in the table of content. 2. Select a monitor point in the Map. After selecting a monitor point a time series chart is appearing.

The time series chart shows for each hour the calculated concentration. By clicking on the line chart the concentration value will be shown as a hint. Delete the value by pressing *backspace* key on the key board.

Zooming in is possible by drawing a rectangle from right to left side with the mouse. Zooming back is possible by drawing a rectangle from left to right side.

The chart can be moved with right mouse click and dragging.

The chart can be copied to the clipboard with the short cut STR+C.

AUSTAL File Formats

Point emission source shape

Format: ESRI Shape Attributable:

field name	explanation	unit	field type digits/Scale
name	name of the source	-	string 30
adress	address (Street and house number)	-	string 30
code	code postal	-	string 5
town	town	-	string 30
year	representative year	-	string20
update	update date	-	string20
editor	Name of the editor	-	string 30
informant	Name of the information	-	string 30
misc	miscellaneous	-	string 30
chi_height	chimney height	m	decimal 10/2
chi_ou_dia	optionally: outer chimney	m	decimal 10/2
chi_in_dia	inner chimney diameter	m	decimal 10/2
	chimney / cooling tower		
ex_temp	exhaust gas temperature	°C	integer 5

	chimney / cooling tower		
ex_velo	velocity exhaust gases/particles	m/s	decimal 10/2
	chimney / cooling tower		
ex_water	water content of exhaust	kg/kg	decimal 10/2
	only for cooling tower		
ex_volfr	volume flow rate	Nm³/h	decimal 10/2
	only for chimney		
ex_moist	relative moisture content of exhaust	%	decimal 10/2
	only for cooling tower		
Idtimserie	name of time series file	-	string 100
eSO2	emission rate annual mean SO2	kg/h	decimal 15/5
eNo	emission rate annual mean NO	kg/h	decimal 15/5
eNo2	emission rate annual mean NO2	kg/h	decimal 15/5
eNOx	emission rate annual mean NOx	kg/h	decimal 15/5
ebenzol	emission rate annual mean Benzene	kg/h	decimal 15/5
ef	emission rate annual mean Hydrogen Fluoride, given as F	kg/h	decimal 15/5
etce	emission rate annual mean Chloroethane	kg/h	decimal 15/5
enh3	emission rate annual mean NH3	kg/h	decimal 15/5
ehg	emission rate annual mean HG	kg/h	decimal 15/5
exx	emission rate annual mean wild card gas	kg/h	decimal 15/5
epm1	emission rate annual mean particle matter 2.5 µm	kg/h	decimal 15/5
epm2	emission rate annual mean particle matter 2.5 -10 µm	kg/h	decimal 15/5
epm3	emission rate annual mean particle matter 10 - 50 µm	kg/h	decimal 15/5
epm4	emission rate annual mean particle matter > 50 µm	kg/h	decimal 15/5
epmx	emission rate annual mean particle matter unknown	kg/h	decimal 15/5
eas1	emission rate annual mean Arsenic PM 2.5 µm	kg/h	decimal 15/5
eas2	emission rate annual mean Arsenic PM 2.5 -10 µm	kg/h	decimal 15/5
eas3	emission rate annual mean Arsenic PM 10 - 50 µm	kg/h	decimal 15/5
eas4	emission rate annual mean Arsenic PM > 50 µm	kg/h	decimal 15/5
easx	emission rate annual mean Arsenic PM unknown	kg/h	decimal 15/5
epb1	emission rate annual mean Lead PM 2.5 µm	kg/h	decimal 15/5
epb2	emission rate annual mean Lead PM 2.5 -10 µm	kg/h	decimal 15/5
epb3	emission rate annual mean Lead PM 10 - 50 µm	kg/h	decimal 15/5
epb4	emission rate annual mean Lead PM > 50 μm	kg/h	decimal 15/5
epbx	emission rate annual mean Lead PM unknown	kg/h	decimal 15/5

ecd1	emission rate annual mean Cadmium PM 2.5 µm	kg/h	decimal 15/5
ecd2	emission rate annual mean Cadmium PM 2.5 -10 µm	kg/h	decimal 15/5
ecd3	emission rate annual mean Cadmium PM 10 - 50 µm	kg/h	decimal 15/5
ecd4	emission rate annual mean Cadmium PM > 50 µm	kg/h	decimal 15/5
ecdx	emission rate annual mean Cadmium PM unknown	kg/h	decimal 15/5
eni1	emission rate annual mean Nickel PM 2.5 μm	kg/h	decimal 15/5
eni2	emission rate annual mean Nickel PM 2.5 -10 μm	kg/h	decimal 15/5
eni3	emission rate annual mean Nickel PM 10 - 50 µm	kg/h	decimal 15/5
eni4	emission rate annual mean Nickel PM > 50 μm	kg/h	decimal 15/5
enix	emission rate annual mean Nickel PM unknown	kg/h	decimal 15/5
ehg1	emission rate annual mean Mercury PM 2.5 µm	kg/h	decimal 15/5
ehg2	emission rate annual mean Mercury PM 2.5 -10 µm	kg/h	decimal 15/5
ehg3	emission rate annual mean Mercury PM 10 - 50 µm	kg/h	decimal 15/5
ehg4	emission rate annual mean Mercury PM > 50 μm	kg/h	decimal 15/5
ehgx	emission rate annual mean Mercury PM unknown	kg/h	decimal 15/5
etl1	emission rate annual mean Thallium PM 2.5 µm	kg/h	decimal 15/5
etl2	emission rate annual mean Thallium PM 2.5 -10 µm	kg/h	decimal 15/5
etl3	emission rate annual mean Thallium PM 10 - 50 µm	kg/h	decimal 15/5
etl4	emission rate annual mean Thallium PM > 50 μm	kg/h	decimal 15/5
etlx	emission rate annual mean Thallium PM unknown	kg/h	decimal 15/5
exx1	emission rate annual mean Wild card PM 2.5 µm	kg/h	decimal 15/5
exx2	emission rate annual mean Wild card PM 2.5 -10 µm	kg/h	decimal 15/5
exx3	emission rate annual mean Wild card PM 10 - 50 µm	kg/h	decimal 15/5
exx4	emission rate annual mean Wild card PM > 50 μm	kg/h	decimal 15/5
exxx	emission rate annual mean Wild card PM unknown	kg/h	decimal 15/5

Area/Grid source shape

Format: ESRI Shape

Attributable:

field name	explanation	unit	field type digits/Scale
z	Geographical location (vertical extent)	m	decimal 10/2
zGround	Geographical location (Height above ground)	m	decimal 10/2
name	name of the source	-	string 30
adress	address (Street and house number)	-	string 30
code	code postal	-	string 5

town	town	-	string 30
year	representative year	-	string20
update	update date	-	string20
editor	Name of the editor	-	string 30
informant	Name of the information	-	string 30
misc	miscellaneous	-	string 30
Idtimserie	name of time series file	-	string 100
eSO2	emission rate annual mean SO2	kg/h	decimal 15/5
eNo	emission rate annual mean NO	kg/h	decimal 15/5
eNo2	emission rate annual mean NO2	kg/h	decimal 15/5
eNOx	emission rate annual mean NOx	kg/h	decimal 15/5
ebenzol	emission rate annual mean Benzene	kg/h	decimal 15/5
ef	emission rate annual mean Hydrogen Fluoride, given as F	kg/h	decimal 15/5
etce	emission rate annual mean Chloroethane	kg/h	decimal 15/5
enh3	emission rate annual mean NH3	kg/h	decimal 15/5
ehg	emission rate annual mean HG	kg/h	decimal 15/5
exx	emission rate annual mean wild card gas	kg/h	decimal 15/5
epm1	emission rate annual mean particle matter 2.5 µm	kg/h	decimal 15/5
epm2	emission rate annual mean particle matter 2.5 -10 μm	kg/h	decimal 15/5
epm3	emission rate annual mean particle matter 10 - 50 μm	kg/h	decimal 15/5
epm4	emission rate annual mean particle matter > 50 μ m	kg/h	decimal 15/5
epmx	emission rate annual mean particle matter unknown	kg/h	decimal 15/5
eas1	emission rate annual mean Arsenic PM 2.5 µm	kg/h	decimal 15/5
eas2	emission rate annual mean Arsenic PM 2.5 -10 μm	kg/h	decimal 15/5
eas3	emission rate annual mean Arsenic PM 10 - 50 μm	kg/h	decimal 15/5
eas4	emission rate annual mean Arsenic PM > 50 μm	kg/h	decimal 15/5
easx	emission rate annual mean Arsenic PM unknown	kg/h	decimal 15/5
epb1	emission rate annual mean Lead PM 2.5 μm	kg/h	decimal 15/5
epb2	emission rate annual mean Lead PM 2.5 -10 μm	kg/h	decimal 15/5
epb3	emission rate annual mean Lead PM 10 - 50 μm	kg/h	decimal 15/5
epb4	emission rate annual mean Lead PM > 50 μm	kg/h	decimal 15/5
epbx	emission rate annual mean Lead PM unknown	kg/h	decimal 15/5
ecd1	emission rate annual mean Cadmium PM 2.5 µm	kg/h	decimal 15/5
ecd2	emission rate annual mean Cadmium PM 2.5 -10 µm	kg/h	decimal 15/5
ecd3	emission rate annual mean Cadmium PM 10 - 50 μm	kg/h	decimal 15/5

ecd4	emission rate annual mean Cadmium PM > 50 μm	kg/h	decimal 15/5
ecdx	emission rate annual mean Cadmium PM unknown	kg/h	decimal 15/5
eni1	emission rate annual mean Nickel PM 2.5 μm	kg/h	decimal 15/5
eni2	emission rate annual mean Nickel PM 2.5 -10 µm	kg/h	decimal 15/5
eni3	emission rate annual mean Nickel PM 10 - 50 µm	kg/h	decimal 15/5
eni4	emission rate annual mean Nickel PM > 50 μm	kg/h	decimal 15/5
enix	emission rate annual mean Nickel PM unknown	kg/h	decimal 15/5
ehg1	emission rate annual mean Mercury PM 2.5 μm	kg/h	decimal 15/5
ehg2	emission rate annual mean Mercury PM 2.5 -10 μm	kg/h	decimal 15/5
ehg3	emission rate annual mean Mercury PM 10 - 50 μm	kg/h	decimal 15/5
ehg4	emission rate annual mean Mercury PM > 50 µm	kg/h	decimal 15/5
ehgx	emission rate annual mean Mercury PM unknown	kg/h	decimal 15/5
etl1	emission rate annual mean Thallium PM 2.5 µm	kg/h	decimal 15/5
etl2	emission rate annual mean Thallium PM 2.5 -10 µm	kg/h	decimal 15/5
etl3	emission rate annual mean Thallium PM 10 - 50 µm	kg/h	decimal 15/5
etl4	emission rate annual mean Thallium PM > 50 μm	kg/h	decimal 15/5
etlx	emission rate annual mean Thallium PM unknown	kg/h	decimal 15/5
exx1	emission rate annual mean Wild card PM 2.5 μm	kg/h	decimal 15/5
exx2	emission rate annual mean Wild card PM 2.5 -10 μm	kg/h	decimal 15/5
exx3	emission rate annual mean Wild card PM 10 - 50 μm	kg/h	decimal 15/5
exx4	emission rate annual mean Wild card PM > 50 μm	kg/h	decimal 15/5
еххх	emission rate annual mean Wild card PM unknown	kg/h	decimal 15/5

Street Emission Source Shape Format: ESRI Shape from type Polyline. Each Line is created only with

two points.

Attributable:

field name	explanation	unit	field type digits/Scale
STR_name	name of the source	-	string 30
town	town	-	string 30
year	representative year	-	string20
update	update date	-	string20
editor	Name of the editor	-	string 30
width	width of the street	m	decimal 8/2
FBHoehe	-	-	decimal 8/2

informant	Name of the information	-	String 30
KennNr	Number of the street segment	-	integer 10
INfz	-	-	integer 10
misc	miscellaneous	-	String 30
IDTV	daily mean traffic of all categories	-	integer 10
height	height above ground	m	decimal 8/2
PLV	daily mean traffic of lorries (>3.5 t, 01)	-	decimal 4/2
nr_lanes	number of traffic lanes	-	integer 10
CanyonTyp	-	-	integer 4
SIG	height of the emission	-	decimal 4/2
STR_KATEGO	type of street	-	String 10
speed_lim	speed limits	-	integer 10
speed_akt	actual speeds	-	integer 10
Fahrmuster	traffic situation	-	String 30
ldtimserie	number of the standardised time series file	-	string 60
eSO2	emission rate annual mean SO2	kg/h	decimal 15/5
eNo	emission rate annual mean NO	kg/h	decimal 15/5
eNo2	emission rate annual mean NO2	kg/h	decimal 15/5
eNOx	emission rate annual mean NOx	kg/h	decimal 15/5
ebenzol	emission rate annual mean Benzene	kg/h	decimal 15/5
ef	emission rate annual mean Hydrogen Fluoride, given as F	kg/h	decimal 15/5
etce	emission rate annual mean Chloroethane	kg/h	decimal 15/5
enh3	emission rate annual mean NH3	kg/h	decimal 15/5
ehg	emission rate annual mean HG	kg/h	decimal 15/5
exx	emission rate annual mean wild card gas	kg/h	decimal 15/5
epm1	emission rate annual mean particle matter 2.5 µm	kg/h	decimal 15/5
epm2	emission rate annual mean particle matter 2.5 -10 µm	kg/h	decimal 15/5
epm3	emission rate annual mean particle matter 10 - 50 µm	kg/h	decimal 15/5
epm4	emission rate annual mean particle matter > 50 μm	kg/h	decimal 15/5
epmx	emission rate annual mean particle matter unknown	kg/h	decimal 15/5
eas1	emission rate annual mean Arsenic PM 2.5 μm	kg/h	decimal 15/5
eas2	emission rate annual mean Arsenic PM 2.5 -10 μm	kg/h	decimal 15/5
eas3	emission rate annual mean Arsenic PM 10 - 50 µm	kg/h	decimal 15/5
eas4	emission rate annual mean Arsenic PM > 50 μ m	kg/h	decimal 15/5
easx	emission rate annual mean Arsenic PM unknown	kg/h	decimal 15/5

		1	1
epb1	emission rate annual mean Lead PM 2.5 µm	kg/h	decimal 15/5
epb2	emission rate annual mean Lead PM 2.5 -10 μm	kg/h	decimal 15/5
epb3	emission rate annual mean Lead PM 10 - 50 μm	kg/h	decimal 15/5
epb4	emission rate annual mean Lead PM > 50 μm	kg/h	decimal 15/5
epbx	emission rate annual mean Lead PM unknown	kg/h	decimal 15/5
ecd1	emission rate annual mean Cadmium PM 2.5 µm	kg/h	decimal 15/5
ecd2	emission rate annual mean Cadmium PM 2.5 -10 µm	kg/h	decimal 15/5
ecd3	emission rate annual mean Cadmium PM 10 - 50 µm	kg/h	decimal 15/5
ecd4	emission rate annual mean Cadmium PM > 50 µm	kg/h	decimal 15/5
ecdx	emission rate annual mean Cadmium PM unknown	kg/h	decimal 15/5
eni1	emission rate annual mean Nickel PM 2.5 μm	kg/h	decimal 15/5
eni2	emission rate annual mean Nickel PM 2.5 -10 µm	kg/h	decimal 15/5
eni3	emission rate annual mean Nickel PM 10 - 50 µm	kg/h	decimal 15/5
eni4	emission rate annual mean Nickel PM > 50 μm	kg/h	decimal 15/5
enix	emission rate annual mean Nickel PM unknown		decimal 15/5
ehg1	emission rate annual mean Mercury PM 2.5 µm	kg/h	decimal 15/5
ehg2	emission rate annual mean Mercury PM 2.5 -10 µm	kg/h	decimal 15/5
ehg3	emission rate annual mean Mercury PM 10 - 50 µm	kg/h	decimal 15/5
ehg4	emission rate annual mean Mercury PM > 50 μm	kg/h	decimal 15/5
ehgx	emission rate annual mean Mercury PM unknown	kg/h	decimal 15/5
etl1	emission rate annual mean Thallium PM 2.5 µm	kg/h	decimal 15/5
etl2	emission rate annual mean Thallium PM 2.5 -10 µm	kg/h	decimal 15/5
etl3	emission rate annual mean Thallium PM 10 - 50 µm	kg/h	decimal 15/5
etl4	emission rate annual mean Thallium PM > 50 µm	kg/h	decimal 15/5
etlx	emission rate annual mean Thallium PM unknown	kg/h	decimal 15/5
exx1	emission rate annual mean Wild card PM 2.5 µm	kg/h	decimal 15/5
exx2	emission rate annual mean Wild card PM 2.5 -10 µm	kg/h	decimal 15/5
exx3	emission rate annual mean Wild card PM 10 - 50 μm	kg/h	decimal 15/5
exx4	emission rate annual mean Wild card PM > 50 μm	kg/h	decimal 15/5
exxx			

Time serie Point/Area/Grid

Format: dBase IV Field list:

field name explanation field type digits/Scale
--

Date	Date every hour in the year (year, month, day, hour, minute)	
prozent	proportion of the emission rate	decimal 15/5

Time serie Street sources

Format: dBase IV

Field list:

field name	explanation	field type digits/Scale
Date	every hour in the year (year, month, day, hour, minute)	Date 30
LKW	proportion of heavy lorries (> 3.5 t)	decimal 15/5
PKW	proportion of vehicles (< 3,5 t)	decimal 15/5

Emission factor file

Format: ASCII Separator: blank

You can choose an Emission Factors file ([Name].EFT) by clicking on the OPEN symbol.

In this ASCII file are listed the route-related emission factors per vehicle for all vehicles (VEC) and heavy duty vehicles (HDV) for various substances. Names of the substances (2. line) must have the same name of the fieldnames defined in the Street source shape. For each substance the measuring units are [mg/m] or [g/km].

The emission factors correspond to the freely selectable annual average traffic situations (e.g. AB>120), which contain cold start share and Stop&Go share.

The traffic Situations bust be stored in the Street emission shape and can be load to the <u>Digitising Street sources dialog</u>.

Emission fa	actors PKW/LI	KW:+year: 20	05 Comme	nts								1
	NOX		Benzol		Particle		Dummy		Dummy		Dummy	
	vhcl	trucks	vhcl	trucks	vhcl	trucks	vhcl	trucks	vhcl	trucks	vhcl	trucks
AB>120	0.00246	0.00631	0.296	2.90	0.00769	0.0293	0.00998	0.0508	-99	-99	-99	-99
AB>100	0.00113	0.00688	0.128	2.81	0.00403	0.0304	0.00389	0.0535	-99	-99	-99	-99
AB_100	0.00157	0.00631	0.206	2.90	0.00644	0.0293	0.00790	0.0508	-99	-99	-99	-99
AB_100	0.00157	0.00631	0.206	2.90	0.00644	0.0293	0.00790	0.0508	-99	-99	-99	-99
HVS4	0.00157	0.00631	0.206	2.90	0.00644	0.0293	0.00790	0.0108	-99	-99	-99	-99

Building Shape

Format: ESRI Shape

Attributable:

field name	explanation	unit	field type digits/Scale
B_height	Height of building	m	decimal 10/2
B_Name	Name of Buliding	-	string 30

Austal2000 Result Shape

Format: ESRI Shape

Attributable:

field name	explanation	unit	field type digits/Scale
[substance]tot	Substance annual mean including background concentration	[µg/m³]	decimal 10/1
[substance]ext	Substance short time value according to the eu directive.	-	decimal 10/1

PROKAS

Introduction

SELMA^{GIS} contains a dispersion field model PROKAS module (<u>http://www.lohmeyer.de/prokas</u>). It is provided as a module under the ArcMap[™] surface.

The mathematical model PROKAS is designed to calculate the immission of an investigation point. It considers the influence of the surrounding road grid on the point of investigation up to a distance of several kilometers. It consists of the basis module PROKAS_V (Gaussian plume model). Besides this emission model the integrated building module PROKAS_B is used for calculating the immissions of densely developed roads.

Calculation of immissions with PROKAS_V

In the draft of the guideline VDI 3782, Sheet 8 "Ausbreitungsrechnung für Kfz-Emissionen", PROKAS_V is designated as a dispersion model to

analyze the concentration distribution both for calculating the pollution load in areas with or without loose development, and for calculating the background pollution concentration of densely developed areas. The Gaussian approach within PROKAS_V corresponds to the "Ausbreitungsmodell für Luftreinhaltepläne" guideline VDI 3782 Sheet 1. The air pollutants of the exhaust plumes are moving with a typical transport velocity ut, which results from a weighted averaging of the vertical wind profile over the concentration distribution in the exhaust plume. Because the vertical concentration profile changes with the distance to the source, ut also becomes a function of the distance to the source. This assures that the continuity equation for the pollutants is valid for any distance from the road to be analyzed.

For calculations, the total road grid is divided into short line sources and the emission of each line source is distributed to several point sources. The distance between the point sources belonging to one line source is at most 1/10 of the distance of the point source to the investigation point. All together, the road grid is approximated by several 10.000 point sources depending on its density. Sensitivity investigations have proven that the calculation results are not affected by a further shortening of the distances between the point sources. For example, the division into single sources can also incorporate the case that emissions vary along a road, for instance if some parts are subject to speed limits. In this case, the point sources in the limited part will emit with a different intensity than those without limitation.

Thanks to the procedure mentioned above it is assured that each road segment can emit simultaneously, i.e. that the whole road grid always emits. This also allows for a realistic simulation of the conditions close to intersections, where emission points exist, which are polluted simultaneously by several roads at certain wind directions. In these cases, it is not correct to determine the 98-percentile value (concentrations which are not exceeded in 98 % of the time) by calculating the influence of each individual road and combining everything at a later stage.

Also the influence of a sound protection measures of a defined length can be considered in this way. This influence inferred in papers by Romberg et al. (1986) for the Bundesanstalt für Straßenwesen. The influence of the sound protection wall is interpreted as an initial dilution, where a value σ_{zo} is added as an additive term to the vertical dispersion parameter σ_z . The dispersion model is able to consider an individual value of σ_{zo} for each line source. The dispersion parameters σ_y , and σ_z of the guideline VDI 3782 Sheet 1 correspond to those of TA air (1986). To correctly determine the 98-percentile value, it is important, to consider the traffic density dependent on the time of day. It also depends on the correct determination of the traffic and emission peaks. The model therefore allows the input of 5 different emission levels and their occurrence frequency.

With respect to the meteorology, PROKAS can calculate with 36 different wind direction classes, 9 different wind speed classes, and 6 different dispersion classes. The dispersion classes take into account that the dilution of exhaust gases for a given wind direction and a given wind speed also depends on the stability of the atmosphere. For instance, the dilution is lower for an "inversion" situation than for sunny, "normal" weather conditions. Altogether 36 x 9 x 6 = 1.944 weather conditions with the corresponding frequencies are considered.

Therefore for each investigation point, the calculated result consists of 1.944 weather conditions x 5 emission levels = 9.720 different concentration values along with the corresponding frequencies. This data shows how often the 9.720 concentration values occur per year. A frequency distribution is retrieved from this data. This distribution allows

for the 98-percentile value to be determined. This is the 98-percentile value of the additional pollution concentration which we were looking for. The immission parameters for the total pollution concentration are determined from the parameters of the background pollution concentration and the additional pollution concentration (due to the traffic emissions on the particular roads) according to the procedure given in the TA Luft (1986) Annex D.

The geometry of the road grid and the investigation points are digitalized or taken over from traffic pattern models, sound calculation programs, or databases. To control the correct input, the software produces a scaled graph with the road grid and the position of the investigation points, as well as a list with the distances (as calculated by the software) of the points to the line sources, and, in addition, the source strengths, the number of point sources and the length of each line source.

The results of the immission calculations (average yearly values and 98percentile values of NO_2 , and the average yearly values of two inert pollutants, e.g. benzene, soot, or PM10) are saved in a file for each investigation point in the form of a table. They can be graphically displayed either in the form of numerical values at the corresponding investigation points, or by colored symbols, with the color set according to the concentration.

Calculation of immisions in densely developed roads with PROKAS B

Immissions cannot be calculated by PROKAS_V in the case of partially or completely closed developments (for instance a street canyons). The supplementary building module PROKAS_B is used instead. It is based on model calculations with the microscale dispersion model MISKAM of all typical types of development. The nondimensional exhaust gas concentration c* was determined for 20 different types of development and 36 flow directions in 1.5 m height and 1 m distance to the next building, respectively.

The different development types are street canyons with one- or twosided development with a varying relation of the building height to the street canyon width and a varying percentage of gaps in the development. Gap density refers to the percentage of non-developed areas along the road with (one- or both-sided) developments. The width of the street canyons is defined as the double of the distance from the middle of the road to the development closest to the road. Tab. 3.1 describes the classification of the various types of developments. Road crossings are not considered due to insights from measurements and model simulations. According to these studies, 10 % to 30 % lesser concentrations can be observed at crossings than at the neighboring street canyons.

The exhaust gas concentrations c are calculated via the nondimensional concentrations

$$c = \frac{c^* \cdot Q}{B \cdot u'}$$

whereby:

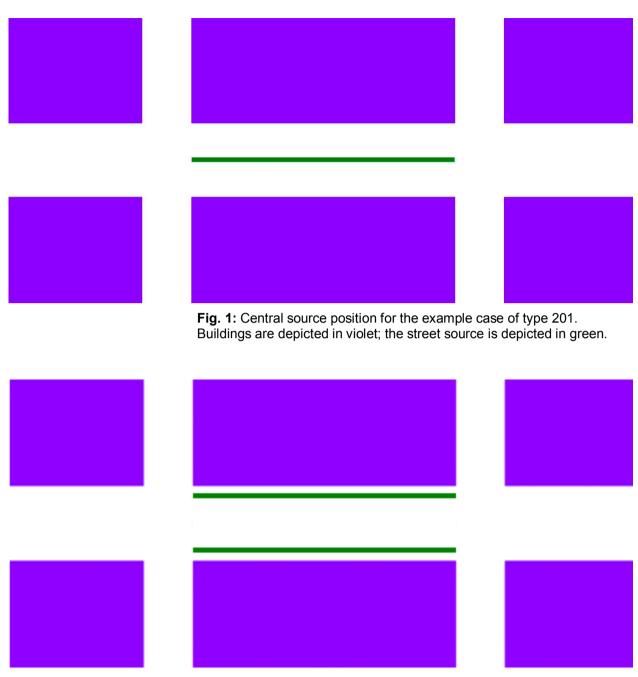
c = exhaust-gas concentration [µg/m³]

c* = nondimensional exhaust-gas concentration [-]

Q = emitted pollution source strength $[\mu g/(m s)]$

B = width of street canyons [m] alternatively the double distance from the middle of the road to the development

u' = wind speed in respect to traffic induced turbulences [m/s]


The contribution to the concentrations of PROKAS_V for the background pollution concentration and of PROKAS_B are combined for all individual situations, i.e. correlated by time.

Ту	/pe	Development	Building height/ street canyon width	Percentage of gaps
One Lane	Two lanes		Street canyon width	[%]
	0*	loose	-	61 - 100
101	301	one-sided	1:3	0 - 20
102	302	"	1:3	21 - 60
103	303	"	1:2	0 - 20
104	304	"	1:2	21 - 60
105	305	"	1:1.5	0 - 20
106	306	"	1:1.5	21 - 60
107	307	"	1:1	0 - 20
108	308	"	1:1	21 - 60
109	309	"	1.5:1	0 - 20
110	310	"	1.5:1	21 - 60
201	401	both-sided	1:3	0 - 20
202	402	"	1:3	21 - 60
203	403	"	1:2	0 - 20
204	404	"	1:2	21 - 60
205	405	"	1:1.5	0 - 20
206	406	"	1:1.5	21 - 60
207	407	"	1:1	0 - 20
208	408	"	1:1	21 - 60
209	409	"	1.5:1	0 - 20
210	410	n	1.5:1	21 - 60

The types 101 and higher are only available, if the building module **PROKAS_B** is installed. If the development-module is not available, 0 has to be set as "development type".

Types 101 till 210 describe a central source (one lane) position like in **Fig. 1**.

Types 301 to 410 represent a street with two lanes like in Fig. 2 shown.

Fig. 2: Central source position for the example case of type 201. Buildings are depicted in violet; the street source is depicted in green.

Controls and Commands


All functions and Dialogs of SELMA^{GIS} can be accessed with Command buttons in the SELMA^{GIS} Toolbar. You get the toolbar by selecting "SELMA^{GIS} 9" in the context menu which is opened by clicking the right mouse button in the menu area of ArcMap.

SELMA^{GIS} Toolbar

- model
- Emission Menu for Calculating road traffic emissions
- Meteo Menu with import Feature
- Domain Menu for preparing terrain grid
- Results Menu for read results of Dispersion models
- Digitising Menu with digitising tools based on ESRI shapes

SELMAGIS

PROKAS

<u>Domain</u>					
	Terrain Create				
	Receptors along Roads				
<u>Res</u>	ults				
	Total Concentration				
<u>Dig</u> i	itising				
	Create Shape				
/	Street Sources				

Input fields for shape files or ASCII support drag&drop files coming from the file manager (e.g. Explorer) or from ArcMap's table of content (TOC). Double click on the white area or click on the directory icon opens an open/save dialog or select directory dialog. Click on the world icon add the shape file to the TOC of ArcMap as a feature layer.

PROKAS Navigation

For each group of PROKAS input data PROKAS dialog provides one panel. Navigation is possible by clicking on list items in the Navigation bar left hand.

Street Emission

Emission Shape File:

The emission shape file is defined by file name by clicking on the open button or double click on the edit field.

Street Emission Receptor Points	Emission Shape File				
Meteorology	Substance	Fieldname	Aktiv		
PROKAS	Substance	Fieldname		-	
				-	
	<u>.</u>	1			
	<u></u>			-	
	-			-	
		1			
	<u>.</u>	1			
	<u></u>			-	
				-	
	Emission Load F	ïle NOx			
				0	

Substance:

All substances, which are found in the emission shape file, are displayed in the column substance.

Fieldname:

In column fieldname a column from emission shape file has to be chosen, which contains the emissions of substance and will be transferred to the output concentration shape file for the calculation of immission.

Active:

The checkbox Active specifies, whether immission will be calculated for a certain substance or not.

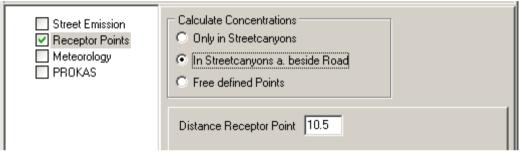
Emission Load File NOx:

"EGN-file" with a summarized, sorted emission curve for a street segment, which will be created in addition to a emission shape file from the emission factory. This EGN-file is just needed for the programs PROKAS, PROKAS_B or SELMA_PROKAS.

Important note:

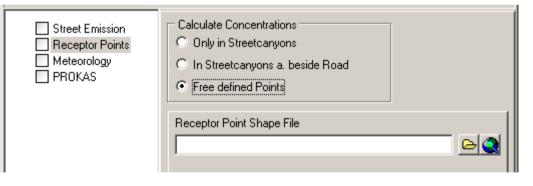
- Check boxes must be activated for each substance which should be considered.
- For Street emissions generate emission with PROKAS E before.

Receptor Points

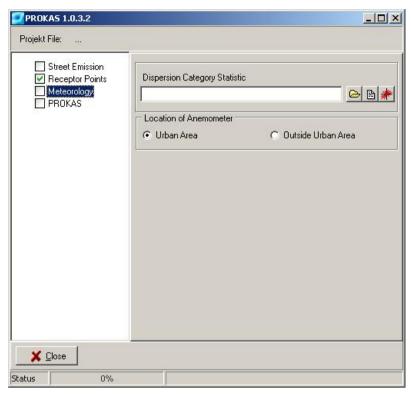

The PROKAS Receptor Points dialog provides a selection for calculating methods.

Street Emission Receptor Points Meteorology PROKAS Calculate Concentrations Only in Streetcanyons In Streetcanyons a. beside Road Free defined Points

Only in Streetcanyons:


PROKAS calculates concentrations in side of street canyons. Streetcanyon

In Streetcanyons along beside Road:


Concentrations will be computed in street canyons and at the border of the road. The border must be defined with the distance between the middle of the street a receptor point. The receptor points will be generated automatically. The minimum of the distance receptor points is 10.5 m. PROKAS do not accept receptor points with a distance less than 10 m.

Free defined Points:

It is possible do generate receptor points in a point shape file. Irregular points can be defined or generate a grid point shape file in the Dialog Domain/Terrain Grid...

Meteorology

Dispersion Category Statistic:

Defines the file name of the dispersion class statistics as WND-File

Location of Anemometer:

Defines the local positioning area of the anemometer to define the according wind profile.

PROKAS 1.0.3.2		
Projekt File:		
Street Emission	Concentration Shape File	
PROKAS	Save as © Pointshape	C Polygonshape
X Close		Run PROKAS
atus 0%		

Start PROKAS

Concentration Shape File:

The concentration shape filename can be defined by clicking on the open button or double click on the edit field.

Run PROKAS:

Generates PROKAS input files and starts the dispersion model PROKAS.

If Receptor Points are defined as grid in a Point shape file the option Save as will appear. It is possible to choose to save results as Polygon shape or Point shape file. The Polygon shape file will be generated by quadratic Polygons. Its centre is the defined Point in the receptor point shape file and the width/height of the quadrat accords to the distance between the first two points of the receptor point shape file.

Clicking on PROKAS Calculation button activates the dispersion computation. Later on, the status window of PROKAS computation kern appears.

As information, on the monitor is displayed which point of all and which dispersion class and wind direction is calculated at the moment. The calculated values for the last point appear in the bottom part of the window. On the right side of the window, you can choose the desired CPU load. On the one hand, it influences the computation time, on the other – the speed at which other Windows applications are used, while PROKAS is computing in the background. If the CPU load is set on a low level, which is the standard default setting, other Windows applications run without significant time limits. If the CPU load is set on HIGH, the dispersion modelling runs faster. The other Windows applications however are becoming slower.

Clicking on the *"Cancel"* window makes it possible to terminate the computation at any time. At doing this, the last calculated point is saved in the Pollutant Concentration shape.

PROKAS 6.510 (C) Ingen	ieurb	<mark>üro L</mark> o	ohmey	/er GmbH &
Aktiv point	11	of	43		
Aktiv wind direction	20				CPU-load C low C medium I high
I1G-N02/Russ/Benzol/PM10 98-Pztl I2G-NO2 : 148		9.329	9.049	42.2	X Cancel

The results are added into the current View.

If the value -99 appears as a concentration value for a particular point, it means that PROKAS could calculate no value for this point. If the street segment has "0" as a Canyon Type value, pollutant receptor points

located in a distance of up to 10 m from the street segment cannot be computed by PROKAS.

PROKAS_E

Program Control takes place entirely with the user interface.

A SD-File, i.e. a file with line geometry and according attributes of road parameters (number of street segment, DTV for VEC and HDV, traffic situation, if applicable stop&go shares, tunnel information and road condition) for every street segment is required. For base year dependent emission factors and vehicle fleet compositions an EFT-file is needed. If applicable a VTG-File with user defined details for diurnal and weekly variations can be used.

Calculation Street Emission

	Create EG	N file		T Ao	cept only used	emission col	umns	60
Input	EFT files							3 4 5
Inde	ex File name							
								e
								3 7
Γυ	se EFT index colu	umnpleas	e select	-				
- Salad	tion of substance	ve l columne			Error checking			
Select	Substances	Column Name	Column Name					
	in EFT	Output	Input					
				- 11	9 -			
님				- 1				
				-	<u> </u>			
				-	4			11
					· · · ·			
- Outpu	ut SD file							
File								E9.

Input SD-File [2]

A SD-File, i.e. a file with line geometry and according attributes of road parameters (number of street segment, DTV for VEC and HDV, traffic situation, if applicable stop&go shares, tunnel information and road condition) for every street segment has to be entered.

Possible input options:

- Click on the button "Open" (record card symbol) [3]
- Drag&drop or entry of path- and file name

Formats:

- SHP (ESRI-Shape file)
- SD3 (ASCII-file)

In case there is a connection between ArcGIS and Prokas_E, it's possible to display the SD-file in ArcGIS by clicking the button "**ArcGIS**" [4] in PROKAS_E

I you push the button "Update" [5] the specified SD-file will be load afresh.

The following options can be selected loading a SD-file:

Create EGN - file:

Creation of an emission time series using a user-defined a diurnal cycle/week cycle of the traffic.

This field is only active when the <u>VTG-file</u> is loaded. For the calculation of emissions with working day traffic values, a diurnal cycle/week cycle of the traffic and the selection of a significant street segment are required.

Accept only used emission columns:

In the Output-Shape-file [13] only used emission columns are written. The allocation of columns has to be specified in **Selection substances/columns** [8].

Input EFT-File [6]

Input of the EFT-file with base year dependent emission factors and vehicle fleet composition.

Input possibilities:

• double click or button "Open" for dialog box [3]input of pathand file name

- <u>EFT3 (ASCII-File)</u>Emission factors according to vehicle type categories in conjunction with Euro-Norm and type of drive and traffic composition of the vehicle type categories PKW, LNF and so on.
- EFTk (ASCII-File) Emission factors according to vehicle type group (vehicles (VEH) and heavy duty vehicles (HDV))

The button "Show" allows to display the file in a standard editor.

Use EFT index-column:

The EFT-Index column allows to use more than one EFT-file e.g. for environmental zones. An index is attributed to every EFT-file in a list. For each street segment the attribute environmental zone index (default column name iUZ) has to be included as an Integer column according to the index in the EFT-file list of the SD-file.

The respective emission factor set, which is extracted from the EFT-file, will be assigned to the street segment according to the index.

Selection of substances/columns [8] Substances in EFT

All substances, which are found in the **EFT - file**, are displayed in the column substances in eft. The checkbox specifies, whether emissions will be calculated for a certain substance or not.

Column Name Output:

In "**column name output**" predefined names for the selected substances can be specified in a list for the output-shape-file (<u>SD-File</u>).

The specification of **"column name output**" causes a renaming of the column name in output-shape-file (only for input-SD-file in shape-format)

Column Name Input:

In "column name input" a column has to be chosen, which will be transferred to the output-shape-file (<u>SD-File</u>) for the calculation of emissions.

Error checking [9]

Program information is displayed as following symbols:

No Error
 Process started / finished
 Caution!
 = Error

Output SD-File [10]	
	Storage directory and name for the output emission file has to be entered. As default the storage location and name of the Input file with the extension "_emi" are suggested.
	Input possibilities:
	double click or button "Save" for input dialog
	drag&drop or manual input of path- and file name
	In case PROKAS_E was opened in ArcGIS it's possible to open and display the output file in ArcGIS.
Check [12]	
	The function "Check" has to be executed before writing SD File.
	The input data will be checked for errors. In the view box the result will be displayed.
	Possible errors are:
	column "IDTV" not found in SD-File
	column "PLV" not found in SD-File
	column "traffic situation" not found in SD-File
	traffic situation AB100 not found in eft-file Nr.: 0
Write SD-File [13]	
	By using the button "Write SD File" [13] emissions for every street segment will be calculated and written to the Output SD-File
Options	

Use Week cycle / Day cycle —						
vtg file:						C
Create EGN file						212
Reference street segment:	:t 💌	🗖 Chrono	logical emiss	ion progress line		2 3
□ Use Stop+Go shares / Column sele	ection Stop+Go share	es (Mo-So)	Columns se	election vehicles ab	solute (DT	V Mo-So)
€ Total Stop+Go shares:please select	Y		□ PC	please select	Y	C C
	(LDV) Heavy Duty		LCA	please select	*	00
C LDV/HDV Stop+Go shar-please select	please sele		Г МС	please select	Y	00
Column selection tunnel			Г нси	please select	-	00
Use Please select	▼ (∀alue = 1 =	tunnel)	UBus	please select	-	00
Column selection road condition (only PM10)			Coach	please select	-	00
Use Please select	v (Value = 1 =	bad)		, .		
Output						
Light Vehicles	Heavy Vehicles —					
☐ Vehicle categories separated	Vehicle categories	separated	Rounding			
			5	Vehicle (s) p	er categor	Y

Use Week cycle/Day cycle [1]

It's required to use a week cycle/day cycle, if DTV values are working day traffic statistic.

VTG-File:

A VTG-File can be imported by using the button "Open" [2]The VTG-File can be displayed in a standard editor with the button "**Text**" [3]

By executing a dispersion calculation with the programs PROKAS, PROKAS_B or SELMA-PROKAS it's required to specify an emission density (EGN-file). The usage of a VTG-file including day and week cycles is necessary.

Create EGN-File:

Activating the check box "create EGN-file" [4] leads to a summarized, sorted emission curve for a street segment, which will be created in

addition to a Output-Shape-File. This EGN-file is just needed for the programs PROKAS, PROKAS_B or SELMA_PROKAS.

Reference street segment:

A representative segment of the Input SD-file needs to be selected for the investigation area. The street segments in the SD-file can be identified by the attribute **"STR_NAME**".

Chronological emission progress line:

By activating the checkbox **chronological emission progress line** [4]a CGN-file (ASCII-file) will be created in addition to the output-shape-file and EGN-file. Therein a chronological emission progress line for working days (Mo-Fr), Saturday (Sa) and Sunday (So) will be saved.

Column selection Stop+Go shares [5]

To activate this section the checkbox "use Stop+Go shares" [5] in the tab "Emission calculation" needs to be hooked.

Stop+Go shares are specified as share and factors respectively (not in percentage). The emissions of a street segment in the relevant traffic situation are composed of an according emission factor multiplied by (1 - Stop+Go share) plus Stop+Go share multiplied by emission factor of the same traffic situation.

Use stop&go shares:

Import stop&go shares

Total Stop+Go shares:

Specifies the column name (Default = STANT) of the Input-SD-file, which contains the total stop+go shares for each street segment. In case the column has the name "STANT", it will be preselected automatically.

LV- / HV-Stop+Go shares:

Activating the checkbox LV- / HV-Stop+Go shares enables the option to specify stop+go shares for light and heavy vehicles separately. The boxes light vehicles (Default = LV_STANT) and heavy vehicles (Default = SV_STANT) define the according column name of the Input-SD-file for the emission calculation of each street segment.

Column selection tunnel [6]

The particulate matter emission factors for abrasion and resuspension in street tunnels distinguish from open roadways. Therefor the emission calculation for PM10 and PM2.5 in tunnel segments uses modified E-

factors (exhaust emission remain uneffected). Tunnel segments in a Input-SD-file can be identified with the option **use tunnel**.

The column with information of the tunnel (Default = TUNNEL) must contain Integer values. The value=1 indicates a tunnel segment. All other values indicate no tunnel.

Column selection road condition (only PM10) [7]

For street segments in bad condition PM10 abrasion and resuspension factors can be doubled (exhaust emission remain uneffected). These street segments are specified in the Input-SD-file in the column selection (Default = ZUSTAND). The value=1 indicates bad road conditions. All other values indicate normal conditions.

Column selection vehicles absolute [9]

Generally information about the traffic composition is obtained by an EFT3-file. However it's possible to define DTV values separately for each street segment and vehicle type category with **"column selection vehicles absolute**". Thereby average traffic counts for one or more vehicle type categories can be predefined in the Input-SD-file. Furthermore Option **"R**" for read must be activated.

The columns traffic counts and heavy vehicles share are still required, in case one vehicle type category is not defined separately. The traffic data of the according vehicle type category are calculated from differences.

For example:

Specifications:

- DTV_{Mo-So} (IDTV) = 10 000,
- HDV-share (PLV) = 10 %
- PC = 8 500 vehicles

Calculation:

- LV (9 000 vehicles) from DTV and HV
- LV PC = LCV und MC (500 vehicles)
- 500 vehicles are allocated proportionately to LCV and MC depending on traffic composition

Furthermore to check it's possible to write the absolute number of individual vehicle types in the Output-Shape-file by activating the checkbox ", \mathbf{W} " (Write). Thereby a column must exist in the Input-SD-file to write the traffic counts of the vehicle type.

Rounding tolerance:

	Using absolute vehicle counts and / or VTG-Files can lead to deviation due to rounding. The sum of vehicles of all vehicle categories can differ from the DTV-value (column IDTV). The option Rounding tolerance enables the possibility to specify a tolerance value per category. Between 0 and 10 vehicles can be chosen. In case this condition is not fullfilled, a warning message occurs in the .
Output <mark>[8]</mark>	
	Light vehicles and / or Heavy vehicles:
	Usually emissions are calculated as a density for all vehicle type categories for each street segment. The option Light vehicles and / or Heavy vehicles can be used to calculate emissions for vehicle type categories separately (e.g. EPM10_LV, EPM10_HV).
	If the checkbox " vehicle categories separated " is hooked, emissions are calculated even more detailed among vehicle categories for each pollutant (e.g. EPM10_PKW, EPM10_LNF). Considered light vehicle categories (LV) are PKW, LNF and KR. Considered heavy vehicle categories (HV) are SNF, LBUS and RBUS.
File formats	
	Detailed description of file formats used by PROKAS_E.
Input-SD-File	
	The Input-SD-File can be either a *.shp-file, a *.sd3-file or a *.dtv-file.
	These files contain in each case the definition of street segments with street width, traffic intensity, HDV share, traffic situation, source height of emissions of street segments.
	For each street segment a row has to be created.

An Input-SD-file has to hold the following structure.

Variable(s)	Туре	meaning	re	quired
			Shape	ASCII (column)
KENNNR	Integer	Identification number	optional	mandatory (1)
X1	Float	Start coordinate of the straight street segment [m]	optional	mandatory (2)
Y1	Float	Start coordinate of the straight street segment [m]	optional	mandatory (3)
X2	Float	End coordinate of the straight street segment [m]	optional	mandatory (4)
Y2	Float	End coordinate of the straight street segment [m]	optional	mandatory (5)
FBREITE	Float	Lane width [m]	optional	mandatory (6)
FBHOEHE	Float	Lane height [m]	optional	mandatory (7)

Variable(s)	Туре	meaning	re	quired
			Shape	ASCII (column)
ENOX	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	mandatory (8)
ENOX_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ENOX_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ENOX_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ENOX_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ENOX_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ENOX_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ENOX_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ENOX_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	mandatory (9)
EBZL_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EBZL_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	mandatory (10)
ERUSS_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ERUSS_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EPM10	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	mandatory (11)
EPM10_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EPM10_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EPM10_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EPM10_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional

Variable(s)	Туре	meaning	re	quired		
			Shape	ASCII (column)		
EPM10_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM10_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM10_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM10_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EPM25_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENO2	Float	mean emission density [mg/(m*s)] accordant to variable id	optional optional			
ENO2_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENO2_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENO2_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional optional			
ENO2_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENO2_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENO2_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENO2_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENO2_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
EBaP_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		
ENH3	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional		

Variable(s)	Туре	meaning	required				
			Shape	ASCII (column)			
ENH3_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ENH3_SV Flo		mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ENH3_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ENH3_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ENH3_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ENH3_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ENH3_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ENH3_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO2_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
ECO_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
EPN	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
EPN_LV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
EPN_SV	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
EPN_PKW	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
EPN_LNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			
EPN_KR	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional			

Variable(s)	Туре	meaning	re	quired
			Shape	ASCII (column)
EPN_SNF	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EPN_LBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
EPN_RBUS	Float	mean emission density [mg/(m*s)] accordant to variable id	optional	optional
ESTOFF5	Float	mean emission density for further pollutants [mg/(m*s)]	optional	mandatory (12)
ESTOFF6	Float	mean emission density for further pollutants [mg/(m*s)]	optional	mandatory (13)
ESTOFF7	Float	mean emission density for further pollutants [mg/(m*s)]	optional	mandatory (14)
ESTOFF8	Float	mean emission density for further pollutants [mg/(m*s)]	optional	mandatory (15)
ESTOFF9	Float	mean emission density for further pollutants [mg/(m*s)]	optional	mandatory (16)
ESTOFF10	Float	mean emission density for further pollutants [mg/(m*s)]	optional	mandatory (17)
IDTV	Integer	mean daily traffic volume	mandatory	mandatory (18)
PLV	Float	HDV-share of the vehicle fleet	mandatory	mandatory (19)
FAHRMUSTER	String	Traffic situation	mandatory	mandatory (20)
Q_STRBR	Float	 roads without ribbon development: source height [m] roads with both-sided ribbon development: distance between opposing buildings [m] roads with one-sided ribbon development : doubled distance from the middle of the street to the ribbon development [m] 	optional	mandatory (21)
SCHLT	Integer	Schluchttyp	optional	mandatory (22)
SIG	Float	Rate of the initial dilution pollutant concentration, default: 1.5 m	optional	mandatory (23)
Str_Name	String	distinct street name	optional	mandatory (24)
Str_Katego	String	informationen of the street category	optional	mandatory (25)
PKW	Integer	absolute number of passenger cars	optional	optional
LNF	Integer	absolute number of light commercial vehicles	optional	mandatory (26)
KR	Integer	absolute number of motorcycles	optional	optional
SNF	Integer	absolute number of HGV (mix: trucks, trailers,)	optional	optional
LBUS	Integer	absolute number of urban buses	optional	optional
RBUS	Integer	absolute number of tour coaches	optional	optional
STANT	Float	Stop&Go share	optional	optional
LV_STANT	Float	Stop&Go share LDV	optional	optional
SV_STANT	Float	Stop&Go share HDV	optional	optional
FS	Integer	lane number	optional	optional

Variable(s)	Туре	meaning	ree	quired
			Shape	ASCII (column)
IUZ Integer		environmental zone index (Auswahl EFT3-Datei)	optional	optional
TUNNEL Integer		tunnel index (1=Tunnel)	optional	optional
ZUSTAND	Integer	road condition index (1=schlecht)	optional	optional

Input-SHP-file

Actually a SHP-file consists of a file compound of *.shp, *.shx, *.dbf and others. Each of these files contains different information of the shape-file, e.g. geometry, attributes. The following description targets on the file compound.

In the SHP-file an object-ID is specified automatically by ArcGIS in the column "FID". The geometry of street segments is saved in the column "shape". Apart from that the columns has to be created analogue to the table in 1.4.. Input-shp-files shall be used for dispersion calculation with PROKAS, PROKAS_B and SELMA-PROKAS.

In the following an example Input-SD-file is shown:

	FID	Shape *	KENNNR	FBREITE	FBHOEHE	IDTV	PLV	FAHRMUSTER	Q_STRBR	SCHLT	SIG	Str_Name	Str_Katego	LNFZ	LBUS	FS	LN	WO	LNEIG	FM_ABB	LOS	STANT
	0	Polylinie	1	16	0	18757	0.05	IO-HVS50_2	0	0	1.5	musterstr_1		0	0	0	0	0	_2	IO-HVS50	f	0
1	1	Polylinie	2	16	0	18757	0.05	IO-HVS50d_2	0	0	1.5	musterstr_2		0	0	0	0	0	_2	IO-HVS50	d	0
F	2	Polylinie	3	16	0	15353	0.08	IO-HVS50d_2	0	0	1.5	musterstr_3		0	0	0	0	0	2	IO-HVS50	d	0
1	3	Polylinie	4	16	0	15353	0.08	IO-HVS50_2	0	0	1.5	musterstr_4		0	0	0	0	0	_2	IO-HVS50	f	0
1	4	Polylinie	5	16	0	15353	0.08	IO-HVS50 2	0	0	1.5	musterstr 5		0	0	0	0		2	IO-HVS50	f	0
1	5	Polylinie	6	16	0	15353	0.08	IO-HVS50_2	0	0	1.5	musterstr_6		0	0	0	0	0	_2	IO-HVS50	f	0
1	6	Polylinie	7	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_7		0	0	0	0		_2	AO-Fern70	f	0
1	7	Polylinie	8	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_8		0	0	0	0	0	_2	AO-Fern70	f	0
	8	Polylinie	9	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr 9		0	0	0	0		2	AO-Fern70	f	0
t	_	Polylinie	10	16	0	15353		AO-Fern70 2	0	0		musterstr_10		0	0	0	0		2	AO-Fern70	f	0
t	10	Polylinie	11	16	0	15353	0.08	AO-Fern70 2	0	0		musterstr 11		0	0	0	0		_2	AO-Fern70	f	0
t		Polylinie	12	16	0	15353		AO-Fern70 2	0	0		musterstr 12		0	0	0	0		_2	AO-Fern70	f	0
1		Polylinie	13	16	0	15353		AO-Fern70 2	0	0	1	musterstr 13		0	0	0	0		_2	AO-Fern70	f	0
1		Polylinie	14	16	0	15353		AO-Fern70 2	0	0	-	musterstr 14		0	0	0	0		_2	AO-Fern70	f	0
1		Polylinie	15	16	0	15353		AO-Fern70 2	0	0	-	musterstr 15		0	0	0	0		_2	AO-Fern70	f	0
t		Polylinie	16	16	0	15353		AO-Fern70 2	0	0	1 1000	musterstr_16		0	0	0	0	0		AO-Fern70	f	0
		Polylinie	17	16	0	15353		AO-Fern70 2	0	0	2	musterstr 17		0	0	0	0	0	_2	AO-Fern70	f	0
t		Polylinie	18	16	0	15353		AO-Fern70_2	0	0	5	musterstr 18		0	0	0	0		_2	AO-Fern70	f	0
1		Polylinie	19	16	0	15353		AO-Fern70 2	0	0	5	musterstr 19	-	0	0	0	0		_2	AO-Fern70	f	0
1		Polylinie	20	20	0	15353		AO-Fern70d 2	0	0	5	musterstr 20	-	0	0	0	0		_2	AO-Fern70	d	0
1	1.5	Polylinie	21	22	0	20227		IO-HVS50d	0	0		musterstr 21	1	0	0	0	0	0	-	IO-HVS50	d	0
1-		Polylinie	22	22	0	20227		IO-HVS50d	0	0	1	musterstr 22		0	0	0	0	0	1	IO-HVS50	d	0

Various options of PROKAS_E can be used by adding further columns. Correspondent properties for each column gathered from table with the information about the structure of an SD-file.

For example it's necessary to add 2 columns, if stop&go share for LV and HV shall be specified separately.

Input-SD3-File

All informations for considered street segments are saved in an Input-SDfile. For SD-files in the ASCII-format there are restrictions on the functionality of PROKAS_E.

atei Bearbeiten Suchen Ansicht Extras Makros begrad3ad3* traßen file : C. \Lohneyer\Beispiel\bsp.sk traueugt as: 09.12.2011 12:59.45 Ifd.: x1. y1. xi Br.; [m]; [m]; [m]; [m]; [m]; [m]; [m]; [m]	d3 503 DefaultStrassenbreite : 0.00 2: y2:Straßensegment: ; mittl.Emiss. [; DTV:LNx-An-; Stoff8; Stoff9; Stoff10;[Kfz/d].teil[-];	- Fehr-; Oh/: Typ: S_20;Str- nuster;SBr[4]: [-]: [a];name
1. 356159.15; 532633.03; 3561445.6; 2. 3561375.17; 5327038.6; 3551275.4; 3. 356143.5; 5327341.35; 3. 356143.5; 5327341.35; 3. 356143.5; 3527451.52; 3. 3561471.3557456.52; 3. 3561473.17; 5327484.76; 3561031.7; 3. 3561473.0; 5327484.76; 3560431.7; 3. 3561473.0; 532844.56; 3560431.7; 3. 3561473.0; 532844.56; 3560431.7; 3. 3560473.0; 532844.56; 3560483.1; 3. 356045.4; 5329442.56; 3560463.1; 3. 356045.4; 5329442.56; 3560463.1; 3. 356045.4; 5329442.76; 3560453.1; 3. 356045.4; 5329424.76; 3560453.1; 3. 356045.4; 5329424.76; 3560454.1; 3. 356045.4; 5329424.77; 3550456.4; 4. 3560464.4; 5329424.17; 3560456.4; 3. 356045.4; 5329424.17; 3560454.4; 3. 356045.4; 5329424.17; 3560454.4; 3. 3560457.5; 5393055.16; 3560454.4; 3. 3560457.4; 53293024.6; 3560454.4; 3. 3560457.4; 5329324.2; 3560454.4; 3. 3560457.4; 5329322.16; 3560454.4; 3. 3560457.5; 5329325.16; 3560454.4; 3. 3560457.4; 5329322.10; 3560457.4; 3. 3560457.4; 5329322.10; 3560457.4; 3. 3560457.4; 5329322.10; 3560457.4; 3. 3560457.4; 5329322.10; 3560457.4; 3. 3560457.4; 5329422.5; 3. 3560457.4; 5329422.5; 3. 3560457.4; 53294257.5; 3. 3560457.4; 532942.5; 3. 3560457.4; 532942.5; 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.00000 0.00000 0.00000 44000 0.166 0.00000 0.00000 0.00000 44000 0.166 0.00000 0.00000 44000 0.166 0.166 0.00000 0.00000 6.00000 54000 0.155 0.00000 0.00000 54000 0.155 0.155 0.00000 0.00000 54000 0.155 0.00000 0.00000 54000 0.165 0.00000 0.00000 54000 0.165 0.165 0.165 0.00000 0.00000 0.00000 54000 0.165 0.165 0.00000 0.00000 0.00000 57900 0.163 0.163 0.00000 0.00000 0.00000 57900 0.163 0.163 0.00000 0.00000 0.00000 57900 0.163 0.163 0.00000 0.00000 0.00000 57900 0.163 0.163 0.163 0.00000 0.00000 0.00000 57900	FROMAS

Notice for the ASCII-format: In case a row starts with a non-Integer value, the row is treated as a comment.

Input-EFT-File

In the head of the Input EFT3-file the following is specified::

- the version of the handbook HBEFA
- date of creation of the EFT-file
- version of HbefaToEft
- title of the file
- Year of the emission factors
- cold start Yes/No
- petrol/diesel separated? No

Therefor the creation of E-factors is reproducible.

The cold start addition is only applied for traffic situations in town, which are characterized with "IO" or "IOS". Furthermore the driving performance rate for standard light vehicles and standard heavy vehicles are displayed separately in percentage [%].

In the EFT-file for all traffic situations for the following pollutants NOx

- NO₂
- PM10
- PM2.5
- BaP
- NH3
- CO₂(total)
- CO
- Benzol
- PN(particle number)

emission factors in [g/km*vehicles for the vehicle categories:

- PKW (PC)
- LNF (LCV)
- KR (MC)
- SNF (HGV)
- LBus (urban bus)
- RBus (tour coach)

are specified.

Furthermore longitudinal slope and level of service (LOS) is specified for every traffic situation. For the level of service 4 different groups are differentiated:

- freeflow
- heavy
- saturated
- stop + go

Longitudinal slope is differentiated in groups of 0%, 2%, 4% and 6%. Whereas there is a difference between ,+,,,-, and ,+,-, (specified as ,-,-). An exact description of traffic situations is attached hereto.

For the emission factors for PM10 and PM2.5 the emissions for abrasion and resuspension as well as rasion and resuspension emissions for tunnels are specified separately.

Datei Bearbeiten Suchen	Ansicht Extras Makros Kont	iguration Fenster Hilfe					
70793 UmleitLanghansstr_2	1011.eft						
Steuerdatei m:\HBEFAT Titel Beispiel Jahr 2011 Kaltstart? Ja Benzin/Diesel getrenn	- © Ingenieurbüro Lohney ToEFT_HDBNHBEFAtoEFT_Com nt? Nein	er GmbH & Co, KG (D∵\Emissi trol.mdb 23.11.2010 11:45.4;					
	Standard-Leichtverkehr- INF KR 5.763% 0.000% 4.073% 0.000% 8.762% 2.500%	Gruppe_[%] Sum 100.000% 100.000% 100.000%					
Fahrleistungsanteile Anteile SNF Autobahn 95.300% Außerorts 90.400% Innerorts 85.500%	Standard-Schververkehr- LBus RBus 0.600% 4.100% 3.400% 6.200% 9.300% 5.200%	Gruppe_[%] Sua 100.000% 100.000% 100.000%					
	$\begin{array}{c} \text{HOr} \ [cor(Au=F2e_3)] \\ \text{EV} \ [Los(Au=F2e_3)] \\ \text{EV} \ [Los(Au=F2e_3)] \\ \text{O} \ (2.7366440 \ 0.766503e_3) \\ \text{O} \ (2.36532e_3) \\ \text{O} \ (2.3652e_3) \\ \text{O} \ (2.3652e_3$	$\begin{array}{c} 0.99797620 & 3.99560014 & 6\\ 0.9973920 & 4.6726532 & 4.6726532 & 7\\ 0.99946028 & 10.8896033 & 11\\ 0.99394602 & 4.42532428 & 8\\ 0.9493962 & 5.41157722 & 9\\ 0.9934604 & 10.8898033 & 11\\ 0.09346028 & 10.8898033 & 11\\ 0.09346028 & 10.8898033 & 11\\ 0.09346028 & 10.8898033 & 11\\ 0.0835471 & 0.838403 & 11\\ 0.0835471 & 0.03346038 & 10\\ 0.09346028 & 10.8389033 & 11\\ 0.09346028 & 10.8389033 & 11\\ 0.09346028 & 10.5342242 & 0\\ 0.09346028 & 10.5342242 & 0\\ 0.09346028 & 10.5342242 & 0\\ 0.09346028 & 10.8389033 & 10.8389033 & 10\\ 0.09849029 & 10.5342242 & 0\\ 0.09849029 & 10.5342242 & 0\\ 0.09849029 & 10.5342242 & 0\\ 0.09849029 & 10.5342242 & 0\\ 0.09849029 & 10.8389033 & 10.8389033 & 10\\ 0.09849029 & 10.8389033 & 10.838903 & 0\\ 0.09849029 & 10.838903 & 0\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849220 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 10\\ 0.09849029 & 0.0984929 & 0.09849290 & 10\\ 0.09849029 & 0.09849290 & 0.09849290 & 0.0984929 & 0.09849290 & 0.0984990 & 0.0984990 & 0.0984990 & 0.0984990 & 0.0984990 & 0.0984990 & 0.0984990 & 0.0984990 & 0.0984990 & 0.0984900 & 0.0$	Bbus 224462 7.52562000 1527205 9.06226149 2722315 2.257985 130218 8.12476151 2313218 2.12476851 2313218 8.12476151 2313218 2.12476851 23132218 2.2247985 2315221 2.247985 2315225 2.247985 2315252 2.247985 2315252 2.247985 2315252 2.247985 2316225 7.4747611 254452 10.789525 2579855 2.279845 3179879 11.946525 315416 9.331417				
Staff Tpp Tpp ToS-Ferrac50d IOS-Ferrac50a IOS-Ferrac50a IOS-HWS50b IOS-HWS50b IOS-HWS50b IOS-HWS50b IOS-HWS50b IOS-HWS50b IOS-HWS50b IOS-HWS30b IOS-HWS30b </td <td>$\begin{array}{c} 0.\ 8897139 \\ 0.\ 8897139 \\ 0.\ 218672634 \\ 0.\ 30141857 \\ 0.\ 8684156 \\ 0.\ 30141857 \\ 0.\ 8694156 \\ 0.\ 30141957 \\ 0.$</td> <td>$\begin{array}{c} 0.00512923 & 0.33229915 & 1\\ 0.0048557 & 0.3755066 & 1\\ 0.0048570 & 0.87557825 & 3\\ 0.00491370 & 0.87557825 & 3\\ 0.00491370 & 0.4868003 & 1\\ 0.00497000 & 0.4868003 & 1\\ 0.00492591 & 0.87557825 & 3\\ 0.00445207 & 0.55112251 & 0\\ 0.00445070 & 0.55112251 & 0\\ 0.00465120 & 0.55112251 & 0\\ 0.00465120 & 0.45187573 & 0\\ 0.00465120 & 0.45187573 & 0\\ 0.00465120 & 0.4518807 & 1\\ 0.00465320 & 0.45318807 & 1\\ 0.00465320 & 0.45318735 & 0\\ 0.00465320 & 0.45318735 & 0\\ 0.00465320 & 0.85318735 & 0\\ 0.00465320 & 0.85318807 & 1\\ 0.00465320 & 0.45318735 & 0\\ 0.00463510 & 0.85318735 & 0\\ 0.00463510 & 0.85318735 & 0\\ 0.00561340 & 0.8757825 & 3\\ 0.00561340 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4771470 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4$</td> <td>50307847 0.63504482 50307847 0.63514482 505254304 0.52144071 57555192 0.62144884 52554304 0.76211167 59862631 1.63244071 18313682 0.9342865 189139300 1.03236446 189393370 1.18174698 5962631 1.63244071 1.63244071 1.63244071 1.63244071 1.6324137 1.6324147 1.6324147 1.6324147 1.6324147 1.6324147 1.6324</td> <td></td> <td></td> <td></td> <td></td>	$\begin{array}{c} 0.\ 8897139 \\ 0.\ 8897139 \\ 0.\ 218672634 \\ 0.\ 30141857 \\ 0.\ 8684156 \\ 0.\ 30141857 \\ 0.\ 8694156 \\ 0.\ 30141957 \\ 0.$	$\begin{array}{c} 0.00512923 & 0.33229915 & 1\\ 0.0048557 & 0.3755066 & 1\\ 0.0048570 & 0.87557825 & 3\\ 0.00491370 & 0.87557825 & 3\\ 0.00491370 & 0.4868003 & 1\\ 0.00497000 & 0.4868003 & 1\\ 0.00492591 & 0.87557825 & 3\\ 0.00445207 & 0.55112251 & 0\\ 0.00445070 & 0.55112251 & 0\\ 0.00465120 & 0.55112251 & 0\\ 0.00465120 & 0.45187573 & 0\\ 0.00465120 & 0.45187573 & 0\\ 0.00465120 & 0.4518807 & 1\\ 0.00465320 & 0.45318807 & 1\\ 0.00465320 & 0.45318735 & 0\\ 0.00465320 & 0.45318735 & 0\\ 0.00465320 & 0.85318735 & 0\\ 0.00465320 & 0.85318807 & 1\\ 0.00465320 & 0.45318735 & 0\\ 0.00463510 & 0.85318735 & 0\\ 0.00463510 & 0.85318735 & 0\\ 0.00561340 & 0.8757825 & 3\\ 0.00561340 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4771470 & 0.4771470 & 0.4771470 & 0\\ 0.00561340 & 0.4771470 & 0.4$	50307847 0.63504482 50307847 0.63514482 505254304 0.52144071 57555192 0.62144884 52554304 0.76211167 59862631 1.63244071 18313682 0.9342865 189139300 1.03236446 189393370 1.18174698 5962631 1.63244071 1.63244071 1.63244071 1.63244071 1.6324137 1.6324147 1.6324147 1.6324147 1.6324147 1.6324147 1.6324				
Stoff Typ IOS-FernC50 IOS-FernC50e IOS-W7550e IOS-W7550e IOS-W550e IOS-W530d IOS-W530d IOS-W530d IOS-W530d IOS-W530e IOS-W530e	0.01091358 0.07590757 0.01949737 0.12841142 0.01110949 0.08627172 0.01334175 0.09414809 0.01996610 0.13280254 0.01640152 0.11303807 0.014485297 0.11007729 0.01619339 0.1109703 0.02097878 0.14295878	0.00000000 0.07960702 0 0.00000000 0.18251038 0 0.00000000 0.0651451 0 0.00000000 0.09528097 0 0.00000000 0.18251038 0 0.00000000 0.11716695 0 0.00000000 0.11980759 0	Iss Ethus LTV 07165531 0.16151326 0. 01865176 0.20263985 0. 0150522 0.49534734 0. 01505178 0.1818066 0. 01505178 0.1818066 0. 01505178 0.25172465 0. 11752722 0.49534734 0. 17568749 0.25172465 0. 18724830 0.3052542 0. 18724830 0.3052542 0. 1752722 0.49534734 0. 175722 0.4954734 0. 175722 0.4954734 0. 175722 0.4954734 0.	026 0.1 033 0.35 045 1.2 026 0.1 033 0.35 045 1.2 026 0.28 026 0.28 035 0.5 045 1.2 045 1.2 045 1.2	$\begin{array}{c c} TU_PM10Ah \left[g \prime (ka*Fzg)\right]\\ IV & SV\\ 0.005 & 0.13$		

The division of the vehicle fleet composition for traffic on highways, out of town and in town for different Euro fleeds are included in the EFT-file.

Furthermore the cold start addition for different traffic situations for the in town traffic are specified. For NO_x the cold start addition is only applied for PKW.

VTG-File

The VTG-file can be opened in the tab option, when using week cycle/ day cycle is hooked.

Datei Bearbeit	en Suchen Ar	nsicht Extrac M	Aakros Konfin	uration Fee	cter Hilfe			
and the second second	en suchen A	ISICIL EXCIDS P	akius kuning		ster mine			
E .								
beispiel.vtg								
	des Verkehrs	auf Woohent	200					
	erktags/DTV:	aur wochent	aye					
	mstags/DTV:	0.83						
	onntags/DTV:	0.67						
LKW-Anteil	werktags/Dur	chschnitt-Lk	W-Antei	1.0				
	samstags/Dur			0.75				
LKW-Anteil	sonntags/Dur	chschnitt-Lk	W-Antei	0.4				
-								
lagesgangli	nie aus Zähl eils in Proz	uaten ont den Toss	owenkehnen	NAC VE				
Angaben jew	venis in Froz werkta		sverkenrsme samstags	enge Kr	sonntags			
Stunde	KFZ	IKV	KFZ	TKA	KFZ	IKW		
1	0.7	1.2 1.		1.1	1.4			
2	0.4	1.5 0.		0.9	1.6			
3	0.3	2 0.		0.7	1.4			
4	0.3	3.2 0.		0.3	1.9			
5	0.6	5.3 0.		0.3	1.7			
6	2.1	5.9 1.		0.4	2			
8	6.1 9.6	6.2 1. 6.5 3.		0.6	3.2 2.9			
9	7.3	6.6 4.		1 2	2.9			
10	6.2	6.7 5.		3.9	4.2			
11	5.5	6.7 6.		5.5	4			
12	5.3	6.5 6.	3 5.5	6.1	3.7			
13	5.2	6.3 6.		5.8	3.5			
14	5.9	66.		7.9	3.4			
15	6.3	5.7 7.	5 4	10	4.1			
16	6.5	5 7.		9.4	4.4			
17 18	7.6 7.3	4.3 7. 3.6 8.		9.3 9.6	4.3 4.7			
19	5.6	2.9 7.		7.9	3.9			
20	4.2	2.2 5.		6.3	4.1			
21	2.5	1.8 4.		4.5	4.9			
22	2	1.6 2.	8 1.5	2.8	10.7			
23	1.6	1.3 2.		2.5	11.9			
24	1.1	1.3 1.	8 1	1.6	8.3			

This file is only needed, if traffic data is available for single working days or if the dispersion calculation will be executed with PROKAS, PROKAS_B or SELMA-PROKAS. These programs require a x.EGN-File.

The distribution of the week cycle for all vehicles and trucks is specified in the VTG-file. In the 9th row a comment about the origin of the data can be entered.

Furthermore the day cycle has to be specified separately for all vehicles and trucks at working days (mo-fr) and at saturday and sunday.

In case a mean traffic composition is existent, the sum of the DTV mean value (mon - sun) and the sum of the DTV mean value (mon - sun) and HDV mean value (mon - sun) has to be 7.

Output-shp-file

Every SHP-file consists of a file composition of *.shp, *.shx, *.dbf and others. Each of these files contains different information about the shape-file e.g. geometry, attributes. The following description of the shape-file targets the file composition.

	FID	Shape	KENNNR	FBREITE	FBHOEHE	IDTV	PLV	FAHRMUSTER	Q_STRBR	SCHLT	SIG	STR_NAME	STR_KATEGO	LNFZ	LBUS	FS	LN	WO	LNEIG	FM_ABB	LOS	STANT	ENO2	ENOX	EPM10	EPM25
	0	Polylinie	1	16	0	18757	0.05	IO-HVS50_2	0	0	1.5	musterstr_1		0	0	0	0	0	2	IO-HVS50	f	0	0.021221	0.10135	0.010106	0.008355
	1	Polylinie	2	16	0	18757	0.05	IO-HVS50d_2	0	0	1.5	musterstr_2		0	0	0	0	0	2	IO-HVS50	d	0	0.027274	0.127413	0.015184	0.009387
	2	Polylinie	3	16	0	15353	0.08	IO-HVS50d_2	0	0	1.5	musterstr_3		0	0	0	0	0	2	IO-HVS50	d	0	0.023948	0.122534	0.014194	0.008124
	3	Polylinie	4	16	0	15353	0.08	IO-HVS50_2	0	0	1.5	musterstr_4		0	0	0	0	0	2	IO-HVS50	f	0	0.018824	0.09828	0.008838	0.007241
ļ	4	Polylinie	5	16	0	15353	0.08	10-HVS50_2	0	0	1.5	musterstr_5		0	0	0	0	0	2	IO-HVS50	f	0	0.018824	0.09828	0.008838	0.007241
ļ	5	Polylinie	6	16	0	15353	0.08	10-HVS50_2	0	0	1.5	musterstr_6		0	0	0	0	0	2	IO-HVS50	f	0	0.018824	0.09828	0.008838	0.007241
	6	Polylinie	7	16	0	15353	0.08	AO-Fem70_2	0	0	1.5	musterstr_7		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	7	Polylinie	8	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_8		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	8	Polylinie	9	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_9		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	9	Polylinie	10	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_10		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	10	Polylinie	11	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_11		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	11	Polylinie	12	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_12		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	12	Polylinie	13	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_13		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	13	Polylinie	14	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_14		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	14	Polylinie	15	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_15		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
Γ	15	Polylinie	16	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_16		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	16	Polylinie	17	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_17		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	17	Polylinie	18	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_18		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	18	Polylinie	19	16	0	15353	0.08	AO-Fern70_2	0	0	1.5	musterstr_19		0	0	0	0	0	2	AO-Fern70	f	0	0.018071	0.08869	0.009048	0.005651
	19	Polylinie	20	20	0	15353	0.08	AO-Fern70d_2	0	0	1.5	musterstr_20		0	0	0	0	0	2	AO-Fern70	d	0	0.022139	0.108353	0.00916	0.006183
	20	Polylinie	21	22	0	20227	0.05	IO-HVS50d	0	0	1.5	musterstr_21		0	0	0	0	0		IO-HVS50	d	0	0.029504	0.144778	0.016117	0.009994
	21	Polylinie	22	22	0	20227	0.05	IO-HVS50d	0	0	1.5	musterstr_22		0	0	0	0	0		IO-HVS50	d	0	0.029504	0.144778	0.016117	0.009994
	22	Polylinie	23	22	0	20227	0.05	IO-HVS50d	0	0	1.5	musterstr_23		0	0	0	0	0		IO-HVS50	d	0	0.029504	0.144778	0.016117	0.009994
Т	23	Polvlinie	24	22	0	20227	0.05	IO-HVS50	0	0	15	musterstr 24		0	0	0	0	0	- í	IO-HVS50	f	0	0 022434	0 114728	0 010754	0 008882

The emissions are output in the column ENO2, ENOX, EPM10, EPM25 (according to the chosen substances). If output of emission for different vehicle type categories as well as output of absolute vehicle counts is chosen, the information is displayed according to the settings of PROKAS_E in the file. Also an*_emi.dbf is created and can be opened with Microsoft Office Excel.

Output-SD3-File

In the header of the SD3-File folder directory, creation date and the default street width of 10m are displayed. Mean emission densities are displayed in the columns NOx, Benzol, Russ und PM10 accordingly to the definition in "selection of substances/columns" in PROKAS_E emission calculation. The amount of output information also depends on the settings in "output" like emissions for different vehicle categories and output of absolute vehicle counts.

Datei Bearbeiten Suchen Ansicht	Extras Makros Konfiguration	Fenster Hilfe									
bsp_sd3_emi.Sd3											
State Control Control <thcontrol< th=""> <thcontrol< th=""> <thcon< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>: Breite Höhe : [a]:[a] 922.19: 0 922.19: 0 924.19: 0 925.211: 0 926.76: 0 824.9: 0 824.9: 0 824.9: 0 825.21: 0</th><th>NOx Benzol 0.0 450726 0.1 4504577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404572 0.1 440472 0.1 440472 0.1 440472 0.1 440472 0.1 440472 0.1 440472 0.1 441423 0.1 441472 0.1 441423 0.1 441423 0.1 441423 0.1 441423 0.1 441423 0.1 441423 0.1 441</th><th>FNL0 FNL0 Storf 5 0 0.20266 0.03795 0.04371 0 0.03996 0.04371 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04472 0.04372 0 0.02371 0.06471 0.042372 0 0.02371 0.04471 0.042372 0 0.02371 0.04471 0.042372 0 0.02371 0.04471 0.042372 0 0.02371 0.04471 0.042352 0 0.02381 0.042252 0.04253 0 0.02381 0.042252 0.035810 0 0.02381 0.042552 0.035810 0 0.023810 0.042555 0.042555 0 0.023810 0.042555 0 0.023</th><th>Staffé Staffé 0: 0: 0:</th><th>0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0</th><th>:Staff9 :Staff9 0: 0:</th><th>DTV Like F.E 0.1 (Kf2, -4) [-1] av 0.1 (Kf2, -4) [-1] av 0.4 (Kf100) 0.55 0.54 0.5 (Kf100) 0.55 0.57 0.5 (Kf100) 0.55 0.57 0.5 (Kf100) 0.55 0.57 0.57 (Kf100) 0.53 0.57 0.57 (Kf100) 0.55 0.57 0.57 (Kf100) 0.55 0.57</th><th>ster :58r(a AB130; AB130; AB130; AB130; AB130; AB130; AB130; AB130; AB130; AD-Fern70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO</th><th>Type:S. 21: Str.− : [a] : name 0: 0: 2: 0: 0: 12: 0: 0: 2:</th><th>Straßen- bategori 1: dua 2: dua 3: dua 4: dua 5: dua 5: dua 5: dua 5: dua 6: dua 8: dua 9: dua 10: dua 11: dua 11: dua 12: dua 12: dua 13: dua 14: dua 10: dua 11: dua 12: dua 12: dua 13: dua 14: dua 15: dua 10: dua 11: dua 12: dua 11: dua 12: dua 12: dua 12: dua 13: dua 14: dua 15: dua 12: dua 12: dua 13: dua 13: dua 13: dua 13: dua 14: dua 15: dua 15:</th></thcon<></thcontrol<></thcontrol<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $: Breite Höhe : [a]:[a] 922.19: 0 922.19: 0 924.19: 0 925.211: 0 926.76: 0 824.9: 0 824.9: 0 824.9: 0 825.21: 0	NOx Benzol 0.0 450726 0.1 4504577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404577 0.1 5404572 0.1 440472 0.1 440472 0.1 440472 0.1 440472 0.1 440472 0.1 440472 0.1 441423 0.1 441472 0.1 441423 0.1 441423 0.1 441423 0.1 441423 0.1 441423 0.1 441423 0.1 441	FNL0 FNL0 Storf 5 0 0.20266 0.03795 0.04371 0 0.03996 0.04371 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04372 0.04371 0 0.20340 0.04472 0.04372 0 0.02371 0.06471 0.042372 0 0.02371 0.04471 0.042372 0 0.02371 0.04471 0.042372 0 0.02371 0.04471 0.042372 0 0.02371 0.04471 0.042352 0 0.02381 0.042252 0.04253 0 0.02381 0.042252 0.035810 0 0.02381 0.042552 0.035810 0 0.023810 0.042555 0.042555 0 0.023810 0.042555 0 0.023	Staffé Staffé 0: 0: 0:	0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0	:Staff9 :Staff9 0: 0:	DTV Like F.E 0.1 (Kf2, -4) [-1] av 0.1 (Kf2, -4) [-1] av 0.4 (Kf100) 0.55 0.54 0.5 (Kf100) 0.55 0.57 0.5 (Kf100) 0.55 0.57 0.5 (Kf100) 0.55 0.57 0.57 (Kf100) 0.53 0.57 0.57 (Kf100) 0.55 0.57 0.57 (Kf100) 0.55 0.57	ster :58r(a AB130; AB130; AB130; AB130; AB130; AB130; AB130; AB130; AB130; AD-Fern70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO-FERN70; AO	Type:S. 21: Str.− : [a] : name 0: 0: 2: 0: 0: 12: 0: 0: 2:	Straßen- bategori 1: dua 2: dua 3: dua 4: dua 5: dua 5: dua 5: dua 5: dua 6: dua 8: dua 9: dua 10: dua 11: dua 11: dua 12: dua 12: dua 13: dua 14: dua 10: dua 11: dua 12: dua 12: dua 13: dua 14: dua 15: dua 10: dua 11: dua 12: dua 11: dua 12: dua 12: dua 12: dua 13: dua 14: dua 15: dua 12: dua 12: dua 13: dua 13: dua 13: dua 13: dua 14: dua 15:

Output-xlm-File

In *_emi.shp.xml-File all relevant settings and parameter are saved in the ESRI-Metadata-format additionally. The used files (Input-SD-file, EFT-file(s) und VTG-file) as well as the allocation of each contaminant are displayed. Furthermore the date of the creation is saved.

Output Report.xls-File

A *emi_report.xls file is created in addition to the SD-file. This file serves as a control and log-file and can be used as a master for a report table. It contains a summary of the emission calculation e.g. the used traffic situation with a description and summarized emission factors.

The *emi_report.xls contains the following worksheets:

- "PROKAS_E_report", with all relevant files, settings and entries of the error checking list
- "Emission factors", report table with used emission factors separately for substances and traffic situations for light and heavy vehicles in mg/km.
- "TS_description", report table with descriptions of the used traffic situation according to HBEFA 3.1

Results

Total Concentrations

	ons shape file IOx/NO2 convers	ion		
• D	üring et al. (2011) O F	tomberg et al. (1996)	
	Substance	Background concentr.		
-				
×	Close			🗸 ок
atus		0%		

Immissions shape file:

Select a shape file with the additional load of emissions. If the field names are included the substrings "j00z" (Austal) or "_zb" (Prokas) then they are added to the "substance" column.

In der Spalte Hintergrundbelastung kann dann die Hintergrundbelastung für den jeweiligen Stoff eingetragen oder eine Spalte der eingeladenen Shape-Datei gewählt werden, welche die Hintergrundbelastungen enthält.

NOx/NO₂ conversion:

Conversion can't be performed if the selected shape file not contains additional load for NO_2 and / or NOx. For the conversion from Düring et al. (2011), the background concentrations of NOx, NO_2 and ozone are needed. For the conversion from Romberg et al. (1996) only NO_2 . *Tau:*

The parameter tau is calculated from meteorological values (e.g. wind speed and turbulence) and the road geometry. Between the two specifications 100 seconds (street canyon) or 40 seconds (free dispersion) can be selected by default.

- Düring, I., Bächlin, W., Ketzel, M., Baum, A., Friedrich, U., Wurzler, S. (2011): A new simplified NO/NO₂ conversion model under consideration of direct NO₂-emissions. Meteorologische Zeitschrift, Vol. 20 067-073 (February 2011).
- Romberg, E., Bösinger, R., Lohmeyer, A., Ruhnke, R. und Röth R. (1996): NO-NO₂-Um-wandlung für die Anwendung bei Immissionsprognosen für Kfz-Abgase. In: Staub-Rein-haltung der Luft, Vol. 56, Nr. 6, p. 215-218.

PROKAS Result Shape

Format: ESRI Shape

Attributable:

field name	explanation	unit	field type digits/Scale
[substance]_i1_zb	Substance annual mean without background concentration	[µg/m³]	decimal 10/1
[substance]_i1_gb	Substance annual mean including background concentration	[µg/m³]	decimal 10/1

I

Index

Import AKTerm 8 Installation 3 Introduction 1 Introduction_1000 1

Μ

Meteorology 37, 64 Meteorology Factory 6 Meteorology Factory Overview 8 Meteoroloy Monin Obukhov Lenth file 14 Monitor Points 38, 46

Ρ

Point emission source shape 47 PROKAS 55 PROKAS Navigation 61 PROKAS_E 66 PROKAS_Result_Shape 85

R

Receptor Points 62 Receptors along Roads 17 Results 44 Results AUSTAL2000 45 Results PROKAS 84

S

SELMAGIS Configuration 5 SELMAGIS Project 4 Show Meteo File 6 Start Austal2000 38 Start PROKAS 64 Street Emission 61 Street Emission Source Shape 51 Support Info 4

т

Terrain 33 Terrain Grid 14 Time serie Point/Area/Grid 53 Time serie Street sources 54 Total Concentrations Prokas 84

W

WND-File 13

AKS file 12 AKTerm 9 Area/Grid source shape 49 AUSTAL Controls and Commands 30 Austal Navigation 32 AUSTAL2000 29 Austal2000_Result_Shape 55

в

Α

Building Shape 55

С

Calculation Street Emission 43, 66 Controls and Commands 59 Create Shape Files 19

D

Digitising Area/Grid Sources 23 Digitising Buildings 25 Digitising Dialog (Control Area) 28 Digitising Menue 26 Digitising Point Sources 22 Digitising Street Sources 20 Digitising Tools 17 Domain 14

Ε

Emission factor file 54 Emission Factory 39 Emission rate dialog 25 Emissions 32

G

Generate Time Serie Area Sources 43 Generate Time Serie Grid Sources 43 Generate Time Serie Point Sources 43 Generate Time Serie Streets 41